Modifications of Isoalantolactone Leading to Effective Antibacterial and Antiviral Compounds

Author(s):  
Sergey S. Patrushev ◽  
Lyubov G. Burova ◽  
Anna A. Shtro ◽  
Tatyana V. Rybalova ◽  
Dmitry S. Baev ◽  
...  

Background: Natural sesquiterpene lactones are an important class of heterocyclic compounds in drug discovery since they are possessed a wide range of biological properties including antibacterial activity. Objective: The objective of this study was to synthesize of isoalantolactone derivatives with a furo[2,3-d]pyrimidin-2-оne moiety and to evaluate their antibacterial and antiviral activity. Methods: The Sonogashira cross-coupling and subsequent Ag-catalyzed cyclization reactions were the main routes of synthesis. The antibacterial activity and the ability to inhibit biofilms formation on E. coli, S. aureus, A. viscosus, P. aeruginosa and E. faecalis bacterial strains were evaluated. A study of the molecular interactions of new compounds with the multiple virulence factor regulators was performed using docking simulations. The antiviral activity against influenza A virus and human orthopneumovirus H-2А was also studied. Results: The in vitro antibacterial activity for 4 (MIC = 58.33±4.41 μg/mL) concerning E. coli and 5 (MIC = 96.5±3.25 μg/mL) against A. viscosus and the inhibition of biofilm formation for compounds 2, 4, and 5 on E. coli, S. aureus, P. aeruginosa and E. faecalis bacterial strains has been of interest for the search of improved antimicrobial agents. Compound 3 was endowed with antiviral activity to human orthopneumovirus H-2А with SI >33. The activity of the new type of hybrid compounds is depended on the substituent in the 6th position of furo[2,3-d]pyrimidin-2-one fragment. Conclusion: The decoration of isoalantolactone with a furo[2,3-d]pyrimidin-2-one fragment led to perspective antiviral and antimicrobial agents. Due to antimicrobial activity, pyridine-4-yl substituted isoalantolactone-furopyrimidinone hybrid is considered as a candidate compound to participate in further research.

2019 ◽  
Vol 65 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Yu.V. Butina ◽  
T.V. Kudayarova ◽  
E.A. Danilova ◽  
M.K. Islyaikin

The work is devoted to predicting and studying biological properties of N-substituted analogs of 3,5-diamino-1,2,4-thiadiazole, which, in their turn, include in the composition of many drugs that exhibit a wide range of pharmacological actions. For searching of new alternative drugs with an antibacterial activity, but lacking resistance of microorganism strains to them, a computer screening of 2N-alkyl-substituted 5-amino-3-imino-1,2,4-thiadiazolines previously synthesized by us was carried out. The prediction of the spectrum of biological activity, as well as the determination of the probable toxicity of these compounds, was performed using the freely available computer programs PASS, Anti-Bac-Pred, and GUSAR. The study of the antibacterial activity in vitro against gram-positive (Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis) and gram-negative (Escherichia coli, Pseudomonas aeruginosae) bacterial strains was performed by the disco-diffusion method. Experimental data roughly correspond to the predictions.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988627 ◽  
Author(s):  
Mekonnen Sisay ◽  
Negussie Bussa ◽  
Tigist Gashaw ◽  
Getnet Mengistu

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


2020 ◽  
Vol 13 (12) ◽  
pp. 469
Author(s):  
Sergey N. Lavrenov ◽  
Elena B. Isakova ◽  
Alexey A. Panov ◽  
Alexander Y. Simonov ◽  
Viktor V. Tatarskiy ◽  
...  

The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5–C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 μg/mL. Compounds with C5–C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 μg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 μg/mL) and Klebsiella pneumonia (2 and 8 μg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2126 ◽  
Author(s):  
Alla V. Lipeeva ◽  
Danila O. Zakharov ◽  
Liubov G. Burova ◽  
Tatyana S. Frolova ◽  
Dmitry S. Baev ◽  
...  

Synthesis of 1,2,3-triazole-substituted coumarins and also 1,2,3-triazolyl or 1,2,3-triazolylalk-1-inyl-linked coumarin-2,3-furocoumarin hybrids was performed by employing the cross-coupling and copper catalyzed azide-alkyne cycloaddition reaction approaches. The synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, Bacillius subtilis, Actinomyces viscosus and Escherichia coli bacterial strains. Coumarin-benzoic acid hybrids 4с, 42с and 3-((4-acetylamino-3-(methoxycarbonyl)phenyl)ethynyl)coumarin (29) showed promising activity against S. aureus strains, and the 1,2,3-triazolyloct-1-inyl linked coumarin-2,3-furocoumarin hybrid 37c was endowed with high selectivity against B. subtilis and E. coli species. The in vitro antibacterial activity of 4с, 29, 37c and 42с can potentially be compared with that of a number of modern antibiotic drugs used in the clinic, suggesting promising prospects for further research. A detailed study of the molecular interactions with the targeted protein MurB was performed using docking simulations and the obtained results are quite promising.


2020 ◽  
Vol 85 (2) ◽  
pp. 155-162
Author(s):  
Thi-Dan Thach ◽  
Thi Le ◽  
Thien-Annguyen Nguyen ◽  
Chi-Hien Dang ◽  
Van-Su Dang ◽  
...  

Two series of sulfonamides were synthesized from 4-hydrazinylbenzenesulfonamide as the key starting material. 1,3,5-Triarylpyrazoline sulfonamides (2a?i) were obtained by cyclocondensation of various chalcones in 53? ?64 % yields, while 4-thiazolidinone derivatives (4a?e) were synthesized by cyclocondensation between mercaptoacetic acid and different phenylhydrazones in 43?62 % yields. The synthesized compounds were characterized based on FTIR, 1H-NMR, 13C-NMR and HRMS data. The sulfonamides were evaluated for their in vitro antimicrobial activities against four bacterial strains (E. coli, P. aeruginosa, B. subtillis and S aureus), two filamentous fungal strains (A. niger and F. oxysporum) and two yeast strains (C. albicans and S. cerevisiae). Seven pyrazolines, 2a?c and 2e?h, exhibited significant inhibition of different microbial strains. Among them, compound 2b displayed good antifungal activity against A. niger (MIC value at 12.5 ?g mL-1) over the reference drug.


2021 ◽  
Vol 33 (7) ◽  
pp. 1525-1529
Author(s):  
Parmesh Kumar Dwivedi ◽  
Devdutt Chaturvedi

A new series of fluorinated sulfur inserted benzimidazole analogues Za-i were synthesized and characterized. The new compounds were screened for their antimicrobial and antioxidant potential. The synthesized compounds were obtained by multiple step synthesis, initiating from the synthesis of 5-(difluoromethoxy)-1H-benzimidazole-2-thiol X. The compounds Ya-i prepared by reacting differently substituted anilines with chloroacetylchloride and triethylamine in DMF. Finally, the compound X was reacted with different derivatives of 2-chloro-N-phenylacetamide resulting in formation of titled compounds Za-i. The synthesized compounds (Za-Zi) were characterized by spectral analysis viz.1H & 13C NMR, mass spectra, elemental analysis and IR. The in vitro antimicrobial potential against Gram-positive (S. aureus and E. faecalis) and Gram-negative bacterial (E. coli and P.aeruginosa) strains as well as fungi (A. niger and C. albicans) was recorded for the obtained compounds. Some of the compounds exhibited encouraging results (in MIC) against Gram-positive and Gram-negative bacterial strains. These studies thus suggest that the designed sulfur inserted fluoro-benzimidazoles scaffold may serve as new promising template for further amplification as antimicrobial agents.


2021 ◽  
Vol 6 (2) ◽  
pp. 1-7
Author(s):  
Barbara Maglione ◽  

Aim: The effective in vitro antibacterial activity on Staphylococcus aureus (S.aureus), Pseudomonas aeruginosa (P.aeruginosa), Klebsiella pneumoniae (K.pneumoniae),Escherichia coli (E.Coli) and the combination of S.aureus and K. pneumonia of a topical cream based on 0.1% polyhexanidewas compared to a topical cream based on 1% silver sulfadiazine.A topical cream containing 0,1% gentamicin was used as a positive control and a white blank topical cream was used as negative control. Materials and Methods: The in vitro antibacterial activities were determined by agar well-diffusion assay. Two-way Analysis of Variance (ANOVA) was used to test, by calculation of P-values, for significant antiseptic activity in bacteria treated with 0.1% polyhexanide topical cream compared to 1% silver sulfadiazine and to the negative and positive controls. Results: Among the derivatives tested, all the active topical creams analyzed were able to reduce microbial strains. The topical cream based on 0.1% polyhexanide showed a significantly higher antibacterial efficacy in comparison to the topical cream based on 1% silver sulfadiazine on S. aureus and K. pneumonia and on the combination of S. aureus and K. pneumoniae,while no significant difference was detected between the antibacterial activity of the two topical creams against P. aeruginosa and E. coli. Conclusion: These results provide a further insight into the antibacterial activity of polyhexanide and its non-inferiority compared to silver sulfadiazine towards certain bacterial strains (P. aeruginosa and E. coli) and superiority towards other (S. aureus and K. pneumoniae)and support the use of 0.1% Polyhexanide topical preparation for the treatment of wounds that are infected or at risk of infection.


2021 ◽  
Vol 17 ◽  
pp. 711-718
Author(s):  
Zafar Iqbal ◽  
Lijuan Zhai ◽  
Yuanyu Gao ◽  
Dong Tang ◽  
Xueqin Ma ◽  
...  

The diazabicyclooctane (DBO) scaffold is the backbone of non-β-lactam-based second generation β-lactamase inhibitors. As part of our efforts, we have synthesized a series of DBO derivatives A1–23 containing amidine substituents at the C2 position of the bicyclic ring. These compounds, alone and in combination with meropenem, were tested against ten bacterial strains for their antibacterial activity in vitro. All compounds did not show antibacterial activity when tested alone (MIC >64 mg/L), however, they exhibited a moderate inhibition activity in the presence of meropenem by lowering its MIC values. The compound A12 proved most potent among the other counterparts against all bacterial species with MIC from <0.125 mg/L to 2 mg/L, and is comparable to avibactam against both E. coli strains with a MIC value of <0.125 mg/L.


2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3308
Author(s):  
Irina Zarafu ◽  
Lilia Matei ◽  
Coralia Bleotu ◽  
Petre Ionita ◽  
Arnaud Tatibouët ◽  
...  

Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis, cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8, and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54% of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3 and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug metabolism indicates that synthesized compounds could be metabolized via other pathways than NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further studies on the action mechanism of these compounds on the cell cycle may bring new information regarding their biological activity.


Sign in / Sign up

Export Citation Format

Share Document