Design and Synthesis of Novel Sulfonamide-Derived Triazoles and Bioactivity Exploration

2020 ◽  
Vol 16 (1) ◽  
pp. 104-118 ◽  
Author(s):  
Shi-Chao He ◽  
Hui-Zhen Zhang ◽  
Hai-Juan Zhang ◽  
Qing Sun ◽  
Cheng-He Zhou

Objective: Due to the incidence of resistance, a series of sulfonamide-derived 1,2,4- triazoles were synthesized and evaluated. Method: The novel sulfonamide-derived 1,2,4-triazoles were prepared starting from commercial acetaniline and chlorosulfonic acid by sulfonylation, aminolysis, N-alkylation and so on. The antimicrobial activity of the synthesized compounds were evaluated in vitro by two-fold serial dilution technique. Results: In vitro antimicrobial evaluation found that 2-chlorobenzyl sulfonamide 1,2,4-triazole 7c exhibited excellent antibacterial activities against MRSA, B. subtilis, B. typhi and E. coli with MIC values of 0.02−0.16 μmol/mL, which were comparable or even better than Chloromycin. The preliminary mechanism suggested that compound 7c could effectively bind with DNA, and also it could bind with human microsomal heme through hydrogen bonds in molecular docking. Computational chemical studies were performed on compound 7c to understand the structural features that are essential for activity. Additionally, compound 7c could generate a small amount of reactive oxygen species (ROS). Conclusion: Compound 7c could serve as a potential clinical antimicrobial candidate.

Author(s):  
Anjani Solankee ◽  
Riki Tailor

In our present investigation a new class of diverse sets of acetyl pyrazolines (6a-e), amino pyrimidines (7a-e) and 1,5-benzodiazepines (8a-e) bearing 1,3,5-triazine core were synthesised from chalcones (5a-e). Treatment of chalcone with hydrazine hydrate, guanidine hydrochloride and o-phenylenediamine afforded the corresponding acetyl pyrazoline, amino pyrimidine and 1,5-benzodiazepine derivatives respectively. The structures of all the newly synthesised compounds were assigned on the basis of FTIR, 1H NMR, 13C NMR, mass spectral data as well as elemental analysis. In vitro antimicrobial proficiency of the title compounds were assessed against selected pathogens S. aureus MTCC 96, S. pyogeneus MTCC 442, E. coli MTCC 443 and P. aeruginosa MTCC 1688 bacteria for antibacterial activities as well as antifungal activities against C. albicans MTCC 227, A. niger MTCC 282 and A. clavatus MTCC 1323 were used. The minimum inhibitory concentration (MIC) was determined by broth dilution method and recorded at the lowest concentration inhibiting growth of the organism. Among the synthesised compounds 6b, 6c, 7b, 8b, 8d and 8e exhibited excellent antimicrobial activity and said to be the most proficient members of the series.


Author(s):  
Jayanta Sarma ◽  
Gurvinder Singh ◽  
Mukta Gupta ◽  
Reena Gupta ◽  
Bhupinder Kapoor

Objective: The synthesis of novel benzimidazole-hydrazone derivatives has been carried out based on the previous findings that both these pharmacophores possess potent antimicrobial activities. The antibacterial properties of synthesized derivatives were screened against both Gram-positive and Gram-negative bacteria.Methods: O-phenylenediamine on condensation with substituted aromatic acids in polyphosphoric acid gave benzimidazole nucleus which on reaction with ethyl chloroacetate and hydrazine hydrate in two different steps resulted in the formation of substituted acetohydrazides. The targeted compounds 6a-l were synthesized by reaction of substituted acetohydrazides with aromatic aldehydes and screened for their antibacterial potential by cup-plate method.Results: The synthesized benzimidazole-hydrazones exhibited moderate to strong antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The compounds 6a-6f were found to be most effective against S. aureus, E. coli, and P. aeruginosa. Among all the synthesized compounds, the zone of inhibition of 6f in highest concentration, i.e., 100 μg/ml were found to be >31 mm against all the stains of bacteria.Conclusion: The antibacterial results revealed that the synthetized derivatives have significant antimicrobial properties and further structure activity relationship studies may develop more potent and less toxic molecules.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Atakilt Abebe ◽  
Tizazu Hailemariam

In this work, two complexes of ruthenium(III) ([Ru(phen)2Cl2]Cl·2H2O and [Ru(phen)2(G)Cl]2Cl·H2O) were synthesized from 1,10-phenanthroline alone as well as from both 1,10-phenanthroline and guanide. The synthesis was checked using halide test, conductance measurement, and spectroscopic (ICP-OES, FTIR, and UV/Vis) analysis. Their in vitro antibacterial activities were also investigated on two Gram-positive (Staphylococcus aureus (S. aureus) and methicillin resistant Staphylococcus aureus (MRSA)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria. These complexes showed wide-range better activities than the commercially available controls (Chloramphenicol and Ciprofloxacin) against even the most drug resistant K. pneumoniae. [Ru(phen)2(G)Cl]2Cl·H2O inhibited S. aureus, MRSA, E. coli, and K. pneumoniae by 17.5%, 27.4%, 16%, and 52%, respectively, better than Chloramphenicol. It also inhibited these pathogens by 5.9%, 5.1%, 2.3%, and 17.2%, respectively, better than Ciprofloxacin. Similarly, [Ru(Phen)2(Cl)2]Cl·2H2O inhibited these pathogens by 11%, 8.7%, 0.1%, and 31.2%, respectively, better than Chloramphenicol. Therefore, after in vivo cytotoxicity investigations, these compounds can be considered as potential antibiotic drugs.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1773
Author(s):  
Patchima Sithisarn ◽  
Piyanuch Rojsanga ◽  
Pongtip Sithisarn

Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.


2020 ◽  
Vol 6 (1) ◽  
pp. 10-22
Author(s):  
Zakaria Tabia ◽  
Sihame Akhtach ◽  
Khalil El Mabrouk ◽  
Meriame Bricha ◽  
Khalid Nouneh ◽  
...  

AbstractMultifunctionality can be achieved for bioactive glasses by endowing them with multiple other properties along with bioactivity. One way to address this topic is by doping these glasses with therapeutic metallic ions. In this work, we put under investigation a series of bioactive glasses doped with tantalum. We aim to study the effect of tantalum, on the structure, bioactivity and antibacterial property of a ternary bioactive glass composition based on SiO2-CaO-P2O5. Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Electron Scanning Microscopy (SEM) were used to assess the structural and morphological properties of these glasses and monitor their changes after in vitro acellular bioactivity test. Antibacterial activity was tested against gram positive and negative bacteria. Characterization results confirmed the presence of calcium carbonate crystallites along with the amorphous silica matrix. The assessment of bioactivity in SBF indicated that all compositions showed a fast bioactive response after only six hours of immersion period. However, analytical characterization revealed that tantalum introduced a slight latency in hydroxyapatite deposition at higher concentrations (0.8-1 %mol). Antibacterial test showed that tantalum ions had an inhibition effect on the growth of E. coli and S. aureus. This effect was more pronounced in compositions where mol% of tantalum is superior to 0.4%. These results proved that tantalum could be used, in intermediate proportions, as a promising multifunctional dopant element in bioactive glasses for bone regeneration applications.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1859
Author(s):  
Periyan Durairaju ◽  
Chinnasamy Umarani ◽  
Govindasami Periyasami ◽  
Perumberkandigai Adikesavan Vivekanand ◽  
Mostafizur Rahaman

Herein we report new multiblock chalcone conjugate phthalimide and naphthalimide functionalized copolymers with a topologically novel architecture synthesis using nucleophilic substitution and polycondensation methodology. The structures of the synthesized novolacs were elucidated on the basis of their spectroscopic analysis including FTIR, 1H NMR, and 13C NMR spectroscopy. Further, the number-average and weight-average molecular weights of the novolac polymers were determined by gel permeation chromatography (GPC). We examined the solubility of the synthesized polymers in various organic solvents including CHCl3, CH3CN, THF, H2O, CH3OH, DMSO, and DMF and found they are insoluble in both methanol and water. The novolac polymers were evaluated for their photophysical properties and microbial activities. The investigation of the antimicrobial activities of these polymers reveals significant antimicrobial activity against the pathogens E. coli, S. aureus, C. albicans, and A. niger.


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


2014 ◽  
Vol 42 (6) ◽  
pp. 1773-1779 ◽  
Author(s):  
Lubna Freihat ◽  
Victor Muleya ◽  
David T. Manallack ◽  
Janet I. Wheeler ◽  
Helen R. Irving

Over 30 receptor-like kinases contain a guanylate cyclase (GC) catalytic centre embedded within the C-terminal region of their kinase domain in the model plant Arabidopsis. A number of the kinase GCs contain both functional kinase and GC activity in vitro and the natural ligands of these receptors stimulate increases in cGMP within isolated protoplasts. The GC activity could be described as a minor or moonlighting activity. We have also identified mammalian proteins that contain the novel GC centre embedded within kinase domains. One example is the interleukin 1 receptor-associated kinase 3 (IRAK3). We compare the GC functionality of the mammalian protein IRAK3 with the cytoplasmic domain of the plant prototype molecule, the phytosulfokine receptor 1 (PSKR1). We have developed homology models of these molecules and have undertaken in vitro experiments to compare their functionality and structural features. Recombinant IRAK3 produces cGMP at levels comparable to those produced by PSKR1, suggesting that IRAK3 contains GC activity. Our findings raise the possibility that kinase-GCs may switch between downstream kinase-mediated or cGMP-mediated signalling cascades to elicit desired outputs to particular stimuli. The challenge now lies in understanding the interaction between the GC and kinase domains and how these molecules utilize their dual functionality within cells.


Author(s):  
Olufunmiso O. Olajuyigbe ◽  
Morenike O. Adeoye-Isijola ◽  
Otunola Adedayo

Background: Black soap is a medicinal product that could be harnessed for economic purpose if properly packaged, and misconception about its traditional use by herbalists is thrown overboard.Aims: To promote the relevance of these soaps for economic development, this study compared the antibacterial activity of black soaps with medicated soaps widely used against bacterial infections.Methods: The antibacterial activities of these soap samples were determined by agar diffusion and macrobroth dilution methods.Results: In this study, the statistical analysis of the inhibition zones showed that black soaps were significantly (p < 0.05) more active than medicated soaps used against the test bacterial isolates. The black soaps inhibited and killed the isolates better than the medicated soaps at the different concentrations used. The minimum inhibitory concentration for Klebsiella pneumoniae and Enterococcus faecalis ranged between 0.125 mg/mL and 2 mg/mL, Staphylococcus aureus (0.25–4) mg/mL, Escherichia coli (0.125–4) mg/mL and Pseudomonas aeruginosa (1–4) mg/mL. The result showed that K. pneumoniae and E. faecalis were the most susceptible, followed by E. faecalis > E. coli > S. aureus > P. aeruginosa.Conclusion: As a valuable medicinal output derivable from organic waste product that could be converted to wealth, African black soap production, utilisation and commercialisation have tremendous economic potentials. These soaps showed significant antibacterial activity greater than those of the medicated soaps. Hence, their use could be a better option in place of commercially available medicated and antiseptic soaps because of the degree of antibacterial activities they exhibited.


Author(s):  
Mohammed M Matin ◽  
Mohammad Ibrahim ◽  
Md Shafiqur Rahman

A number of 2,3-di-O-acyl derivatives (6-11) of methyl 4-O-acetyl-a-Lrhamnopyranoside (5) obtained by using various acylating agents were screened for in vitro antifungal activity against four plant pathogenic fungi, viz., Alternaria alternata, Curvularia lunata. Fusarium equiseti and Macrophomina phaseolina. These compounds were also screened for in vitro antibacterial activity against ten human pathogenic bacteria, viz., Bacillus subtilis, Bacillus cereus, Bacillus megaterium, Staphylococcus aureus, Escherichia coli, INABA ET (Vibrio), Pseudomonas species, Salmonella paratyphi, Shigella dysenteriae and Salmonella typhi. The study reveal that these 4-O-acetyl-?-L-rhamnopyranoside derivatives are more prone towards antifungal activities than that of antibacterial activities. DOI: http://dx.doi.org/10.3329/cujbs.v3i1.13404 The Chittagong Univ. J. B. Sci.,Vol. 3(1&2):33-43, 2008


Sign in / Sign up

Export Citation Format

Share Document