Pycnogenol Protects against Pentylenetetrazole-Induced Oxidative Stress and Seizures in Mice

2019 ◽  
Vol 14 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Radha Goel ◽  
Prasoon Saxena

Background:Epilepsy is one of the most common and severe brain disorders in the world, characterized by recurrent spontaneous seizures due to an imbalance between cerebral excitability and inhibition. Oxidative stress is a biochemical state in which reactive oxygen species are generated and associated with various diseases including epilepsy. Pycnogenol, a polyphenol obtained from the pine tree and has antioxidant & anti-inflammatory activity. So, the aim of the study was to evaluate the effect of Pycnogenol on pentylenetetrazole (PTZ)-induced seizures in mice.Methods:The mice of swiss strain each weighing 18-30g were used. Pycnogenol (50&100mg/kg) was suspended in carboxymethyl cellulose in saline and administered orally. Diazepam (1mg/kg, i.p) was used as a standard drug. The anticonvulsant effects of the drugs were measured using PTZ and cognitive behaviour was also assessed. The biochemical estimation was done by measuring Thiobarbituric acid, Superoxide dismutase, Catalase, and reduced glutathione followed by the histopathological study.Result:Pycnogenol 50 & 100mg/kg showed a significant increase in latency to PTZ-induced seizures, decrease in duration and frequency of convulsions compared to control animals; however, the effects were dose-dependent and were more significant at a higher dose. No impairment in cognitive functions like memory and muscle relaxant was observed following pycnogenol 50 & 100 mg/kg. The effect of Pycnogenol on biochemical parameter was found to be significant. It significantly (p<0.01) decreases the level of TBARS and increases the levels of SOD, catalase, and GSH in the brain tissue. The histopathological evaluation showed less neuronal degeneration in the brain due to PTZ-induced seizures in comparison to control group.Conclusion:Thus pycnogenol has a protective approach towards convulsion and can be included as an adjuvant therapy with antiepileptic drugs.

2011 ◽  
Vol 30 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
Amit K Sharma ◽  
Swapan K Bhattacharya ◽  
Naresh Khanna ◽  
Ashok K Tripathi ◽  
Tarun Arora ◽  
...  

Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.


2014 ◽  
Vol 12 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Joseânia Salbego ◽  
Alexssandro G. Becker ◽  
Jamile F. Gonçalves ◽  
Charlene C. Menezes ◽  
Clarissa G. Heldwein ◽  
...  

This study investigated the effects of the essential oil (EO) from Lippia alba on biochemical parameters related to oxidative stress in the brain and liver of silver catfish (Rhamdia quelen) after six hours of transport. Fish were transported in plastic bags and divided into three treatments groups: control, 30 µL L- 1 EO from L.alba and 40 µL L-1 EO from L.alba. Prior to transport, the fish were treated with the EO from L. alba (200 µL L -1 for three minutes), except for the control group. Fish transported in bags containing the EO did not have any alterations in acetylcholinesterase, ecto -nucleoside triphosphate diphosphohydrolase and 5'nucleotidase activity in the brain or superoxide dismutase activity in the liver. The hepatic catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx), nonprotein thiol and ascorbic acid levels were significantly lower compared to the control group. However, the hepatic thiobarbituric acid- reactive substances, protein oxidation levels and the lipid peroxidation/catalase+glutathione peroxidase (LPO/CAT+GPx) ratio were significantly higher in fish transported with both concentrations of the EO, indicating oxidative stress in the liver. In conclusion, considering the hepatic oxidative stress parameters analyzed in the present experiment, the transport of previously sedated silver catfish in water containing 30 or 40 µL L-1 of EO from L. alba is less effective than the use of lower concentrations.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2020 ◽  
Vol 16 (5) ◽  
pp. 743-748
Author(s):  
Ana R.S. de Oliveira ◽  
Kyria J.C. Cruz ◽  
Jennifer B.S. Morais ◽  
Juliana S. Severo ◽  
Jéssica B. Beserra ◽  
...  

Background: The role of minerals in preventing the generation of oxidative stress in obese individuals has been evaluated. Magnesium is an antioxidant nutrient and a cofactor of enzymes involved in the cell membrane stabilization, attenuating the effects of oxidative stress. Objective: To evaluate the association between magnesium and concentrations of thiobarbituric acid reactive substances (TBARS) in patients with obesity and eutrophic women. Methods: A cross-sectional study was conducted with 73 women, divided into two groups: case group (patients with obesity, n=27) and control group (eutrophic women, n=46). Measurements of body mass index and waist circumference were performed. Dietary magnesium intake was assessed by the three-day food record using the NutWin software. Urinary magnesium concentration was measured by atomic absorption spectrophotometry method. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were also determined. Results: Mean values of dietary magnesium intake were 161.59 ± 60.04 and 158.73 ± 31.96 for patients with obesity and control group, respectively, with no significant difference between the groups studied (p >0.05). The value of urinary excretion of magnesium was lower than the reference values in both groups, with no significant difference between the groups studied (p >0.05). The plasma concentration of thiobarbituric acid reactive substances was significantly higher in patients with obesity compared to the control group (p <0.001). There was no correlation between levels of magnesium biomarkers and the concentration of TBARS (p >0.05). Conclusion: Patients with obesity showed a reduced dietary magnesium intake which seems to induce hypomagnesuria as a compensatory mechanism. The marker of oxidative stress evaluated in this study was not influenced by magnesium.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2004 ◽  
Vol 23 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Kanwaljit Chopra ◽  
Devinder Singh ◽  
Vikas Chander

Intraperitoneal injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. This study was designed to investigate the effect of catechin, a bioflavonoid with antioxidant potential, on Fe-NTA-induced nephrotoxicity in rats. Four groups were employed in the present study. Group I served as control group, Group II animals received Fe-NTA (8 mg iron/kg body weight i.p.), Group III animals were given 40 mg/kg catechin p.o. twice a day for 4 days and on the 5th day Fe-NTA was challenged, and Group IV animals received catechin alone for 4 days. Renal function was assessed by measuring plasma creatinine and blood urea nitrogen. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, glutathione reductase and superoxide dismutase. One hour after a single intraperitoneal (i.p.) injection of Fe-NTA (8 mg iron/kg), a marked deterioration of renal architecture, renal function and severe oxidative stress was observed. Pretreatment of animals with catechin markedly attenuated renal dysfunction, reduced elevated thiobarbituric acid reacting substances (TBARS), restored the depleted renal antioxidant enzymes and normalized the renal morphological alterations. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of catechin on Fe-NTA-induced nephrotoxicity in rats.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sobia Manzoor ◽  
Ayesha Khan ◽  
Beena Hasan ◽  
Shamim Mushtaq ◽  
Nikhat Ahmed

Background: Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and activities of enzymatic and antioxidant systems in schizophrenia. Objectives: Present study focuses on identification of HNE-protein adducts and its related molecular consequences in schizophrenia pathology due to oxidative stress, particularly lipid peroxidation. Material and Methods: Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances (TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also estimated. Results: Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ± 1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects an increased lipid peroxidation (LPO). Conclusion: Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production. Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative stress in schizophrenia pathology.


Author(s):  
Ranjan Kumar Giri ◽  
Sunil Kumar Kanungo ◽  
Saroj Kumar Patro ◽  
Minaketan Sahoo ◽  
Dibya Sundar Panda

Lipid lowering effect of polyherbal formulations using eight different plants was evaluated in triton and diet induced hyperlipidemic models of wistar albino rats. Formulations such as Tablet, Syrup and Suspension inhibited the elevation in serum cholesterol and triglyceride levels on Triton WR 1339 administration rats. The formulations at the same dose level significantly attenuated the elevated serum total cholesterol and triglycerides with an increase in high-density lipoprotein cholesterol in high-fat diet-induced hyperlipidemic rats. The standard drug Niacin showed slightly better effects. The treatment with herbal formulations produced 30-35 percentage improvement in oral glucose tolerance. Similarly all the formulations also reduced the elevated C-reactive protein which is a marker of Hyperlipidemia. In histopathological study it was found that treatment of polyherbal formulation significantly reduced the plaque size in aorta compared with HFD treated control group. The outcome of the study reveals the lipid lowering activity of polyherbal formulations in dyslipidaemic conditions by interfering with the biosynthesis of cholesterol and utilization of lipids.


2020 ◽  
Vol 13 (7) ◽  
pp. 1404-1409
Author(s):  
Retno Susilowati ◽  
Abdul Malik Setiawan

Background and Aim: Hyperlipidemia is an important risk factor for cardiovascular disease. The use of statins has adverse side effects that result in oxidative stress disorders. The objective of this study was to investigate the antihyperlipidemic effect of a combination of Cinnamomum burmannii and Eleutherine palmifolia extract in high-fat diet (HFD)-induced hyperlipidemia mice. Materials and Methods: Mice were divided into eight groups (n=4): Control group or healthy mice (normal), HFD-induced hyperlipidemic mice without any treatment (CE0), HFD-induced hyperlipidemic mice treated with 3.6 mg/kg body weight (BW) atorvastatin (atorvastatin), and HFD-induced hyperlipidemic mice treated with a combination of C. burmannii and E. palmifolia in the following ratios: 300:0 (C300), 225:75 (C225), 150:150 (CE150), 75:225 (E225), and 0:300 (E300). Mice were fed a HFD for 4 months to induce hyperlipidemia. Total cholesterol, cholesterol oxidase-peroxidase aminophenazone (CHOD-PAP), triglyceride-glycerine, and fat serum were analyzed with colorimetric method. The measurement of superoxide dismutase was done with the xanthine oxidase method and malondialdehyde measurement was done with the thiobarbituric acid method. Results: Results showed an increase in antihyperlipidemic characteristics as the concentration of E. palmifolia extract (p<0.05) increased. Duncan's multiple range test also showed an increase in anti-stress oxidation as the concentration of C. burmannii extract (p<0.05) increased. Conclusion: The E225 group showed the most potential as a safe, antihyperlipidemic agent characterized by improvement in lipid profile and antioxidant balance.


Sign in / Sign up

Export Citation Format

Share Document