Evaluation of Cytotoxic Effect of Silver Nanoparticles (AgNP) Synthesized from Phlebodium aureum (L.) J. Smith Extracts

Author(s):  
Johnson Marimuthu ◽  
Shibila Thangaiah ◽  
Amutha Santhanam ◽  
Vidyarani George

Background:: Chemical synthesis methods are adverse in the medicinal field as they produce toxic in the surface whereas green synthesis provide advancement as well as they are cost effective, environment friendly, can be easily scaled up for large scale synthesis. Silver and silver nanoparticles have an important application in the medical industry such as tropical ointments which are used to prevent infection against burn and open wounds. There is no report on the green synthesis from Phlebodium aureum (L.) J. Smith. Objective:: The present study was aimed to synthesize silver nano-particles using Phlebodium aureum (L.) J. Smith extracts by green approach and to screen their cytotoxicity. Methods:: The synthesized AgNPs of P. aureum were characterized by FT-IR, SEM and XRD. The cytotoxicity of the aqueous extracts and AgNPs of P. aureum were determined. Results:: The silver nanoparticle synthesis was confirmed by color change from yellow to dark brown and absorption peak at 460 nm. FT-IR analysis confirmed the capping by proteins and other metabolites. XRD analysis confirmed the existence of silver nanaoparticles with a peak at 46.253°. The dose dependent cytotoxicity was observed in the aqueous and silver nanoparticles of P.aureum. Conclusion:: The present study gave a simple and cheap route to synthesize the AgNPs using aqueous extracts of P. aureum. The studied extracts of P. aureum can be considered as a promising candidate for a plant-derived anti-tumour compound.

2020 ◽  
Vol 11 (1) ◽  
pp. 8577-8586

Nanoparticle synthesis by the biological method is economical and environmentally friendly. In the present study, the biosynthesis of silver nanoparticles is performed by using extracts of Melia Azedarach plant leaves. The synthesis is performed by adding to the silver nitrate solution to the leaf extract of Melia azedarach. The color change state the precipitation of nanoparticles of silver. The silver nanoparticles obtained were characterized by various techniques such as X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM), and Energy dispersive spectroscopy (EDX). The XRD analysis shows the particle size of 11 nm calculated by the Debye-Scherrer. The microstructure analysis shows silver particles of spherical and triangular. The corrosion rate was found to be 0.025 mpy. The green silver nanoparticle (AgNPs) synthesized have better antimicrobial potential against both bacteria’s (Bacillus subtilis and Pseudomonas aeruginosa).


Author(s):  
Sankar S ◽  
Ganga Krishnan

The green synthesis of nanomaterials is becoming much popular as a result of worldwide problems associated with environmental concerns. In the present work, leaf extract of Barbadensis Miller, (commonly known as Aloe vera) was used for bio-reduction of silver ions to silver nanoparticles. Aloe vera extract and AgNO3 solution in different volumes were treated and it resulted in the reduction of Ag+ ions to Ag metal atoms, which further accumulated as Ag nanoparticles. The prepared nanoparticles were characterized by UV-vis spectroscopy, SEM, FT-IR spectroscopy and XRD analysis. The present study established that the shape and size of the silver nanoparticles can be effectively controlled and modulated using green synthesis technique. The scope of the prepared particles for anti-microbial applications were also investigated.


2021 ◽  
Vol 12 (4) ◽  
pp. 4597-4602

Green synthesis highlights sustainable methods to produce silver nanoparticles (AgNPs). Here, extracts from fresh and lyophilized Mentha leaves produced AgNPs when performing reactions in the dark at 25ºC or 75ºC; also under photosynthetically active radiation (PAR) at 25ºC aiming to compare hydrothermal and photochemical methods. AgNPs formation was spectrophotometrically monitored and characterized by dynamic light scattering (DLS) and Zeta potential (ZP). The most polydisperse AgNPs suspension was synthesized at 25ºC (dark), presenting polydispersity index (PdI) of 0.574±0.061, and exhibited the lowest hydrodynamic diameter (HD) of 44.34±1.60 nm. In contrast, the highest HD was 80.15±2.88 nm to AgNPs produced at 25ºC with PAR which exhibited ZP of -27.8±0.7 mV. The lowest polydisperse suspension was produced at 75ºC (dark), presenting PdI of 0.369±0.009 and ZP of -12.8±0.6 mV. Concluding, we compared reliable green synthesis’ methods to determine which would efficiently produce AgNPs using Mentha leaves.


2020 ◽  
Vol 9 (1) ◽  
pp. 268-274
Author(s):  
Anuja S. Kumar ◽  
Gayathri Madhu ◽  
Elza John ◽  
Shinoj Vengalathunadakal Kuttinarayanan ◽  
Saritha K. Nair

AbstractAmong the various green synthesis methods for nanoparticle synthesis, the honey-mediated green synthesis of nanoparticles is a fast, safe, biocompatible, and cost-effective method. In the present work, we demonstrate the sunlight-induced honey-mediated synthesis of silver nanoparticles and report the effect of light intensity, its color, and exposure time on the formation of nanoparticles. The visual inspection followed by UV-Vis spectral studies was performed to confirm the formation of silver nanoparticles. The HRTEM measurement confirms the formation of polydispersed silver particles. We further report the excellent antimicrobial activity of the synthesized nanoparticles against various strains of bacteria, which is found to be comparable to that of the antibiotic drug of choice. Our study points to further research on the possibility of considering these green synthesized silver nanoparticles as an alternative to antibiotics.


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


2021 ◽  
Author(s):  
Sunil T. Galatage ◽  
Aditya S. Hebalkar ◽  
Shradhey V. Dhobale ◽  
Omkar R. Mali ◽  
Pranav S. Kumbhar ◽  
...  

Nanotechnology is an expanding area of research where we use to deal with the materials in Nano-dimension. The conventional procedures for synthesizing metal nanoparticles need to sophisticated and costly instruments or high-priced chemicals. Moreover, the techniques may not be environmentally safe. Therefore “green” technologies for synthesis of nanoparticles are always preferred which is simple, convenient, eco-friendly and cost effective. Green synthesis of nanoparticle is a novel way to synthesis nanoparticles by using biological sources. It is gaining attention due to its cost effective, ecofriendly and large scale production possibilities. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. It has vital importance in nanoscience and naomedicines to treat and prevent vital disease in human beings especially in cancer treatment. In current work we discussed different methods for synthesis of AgNPs like biological, chemical and physical along with its characterization. We have also discussed vital importance of AgNPs to cure life threatnign diseases like cancer along with antidiabetic, antifungal, antiviral and antimicrobial alog with its molecular mode of action etc. Finally we conclude by discussing future prospects and possible applications of silver nano particles.


2021 ◽  
Vol 10 (2) ◽  
pp. 54-58
Author(s):  
Giang Nguyen Thi Le ◽  
Tu Nguyen Cong ◽  
Thang Pham Van ◽  
Mai Nguyen Thi Tuyet ◽  
Lan Nguyen Thi ◽  
...  

In the present work,  a green synthesis of  cuprous oxide nanoparticles  was demonstrated using the freshly prepared aqueous extract of the aloe vera plant and the cupper oxide nanoparticles  were characterized by the analytical techniques such as UV-Vis, FT-IR, XRD, and EDX. Characterization techniques confirmed that the biomolecules involved  in the formation of cupper oxide nanoparticles and also they stabilized the nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document