scholarly journals Antibacterial and Anti-inflammatory Potential of Morus alba Stem Extract

2018 ◽  
Vol 12 (1) ◽  
pp. 265-274 ◽  
Author(s):  
Ichaya Yiemwattana ◽  
Niratcha Chaisomboon ◽  
Kusuma Jamdee

Background: Periodontitis, a chronic inflammatory disease, is the leading cause of tooth loss in adults. Evidence for the anti inflammatory activity of M. alba Stem Extract (MSE) in periodontal disease is limited. Objective: The study aimed to investigate the inhibitory effect of MSE on the growth of periodontopathic bacteria and expression of interleukin (IL)-6 and IL-8 in Porphyromonas gingivalis Lipopolysaccharide (LPS)-stimulated human Periodontal Ligament (hPDL) fibroblasts. Methods: The antimicrobial activities of MSE were tested against P. gingivalis and Actinobacillus actinomycetemcomitans by the disk diffusion, the minimum inhibitory concentration and the minimal bactericidal concentration methods. Cytotoxicity of P. gingivalis LPS and MSE on hPDL fibroblasts was determined by MTS assay. The expression of cytokines (IL-6 and IL-8) mRNA and proteins in hPDL fibroblasts was measured using the reverse transcription-qPCR and enzyme-linked immunosorbent assay, respectively. Results: MSE exhibited antibacterial activities against P. gingivalis and A. actinomycetemcomitans with the zones of inhibition of 10.00 ± 0.33 mm and 17.33 ± 0.58 mm, respectively. MIC and MBC values for MSE against P. gingivalis were 62.5 μg/ml. The MIC and MBC values against A. actinomycetemcomitans were 250 μg/mL and 500 μg/ml, respectively. P. gingivalis LPS was shown to mediate the expression of pro-inflammatory cytokines in hPDL fibroblasts. However, treatment with MSE concentrations of 2.5 and 5.0 μg/ml significantly suppressed P. gingivalis LPS-induced IL-6 and IL-8 mRNA and protein expression (p< 0.05). Conclusion: The present study demonstrates that MSE has antibacterial activity against two putative periodontal pathogens. MSE suppressed IL-6 and IL-8 expression in P. gingivalis LPS-stimulated hPDL fibroblasts, indicating a possible anti-inflammatory effect. Thus, it is a potential adjunctive agent for the treatment of periodontitis.

2016 ◽  
Vol 873 ◽  
pp. 71-78
Author(s):  
Wen Yao Shao ◽  
Xue Shan Pan ◽  
Quan Ling Xie ◽  
Shi Yi Luo ◽  
Xiao Ting Liu

With tetracycline and anphotericin as control, using discdiffusion technique to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts from 110 medicinal herbs, investigating their antimicrobial activities. Found that 3 medicinal herbs, Fructus mume, Rhizoma coptidis and Flos caryophyllata have great inhibitory effect on Bacillus subtilis but no obviously inhibitory effect on Aspergillus oryzae. It is evident that the extracts of Fructus mume, Rhizoma coptidis and Flos caryophyllata have antibacterial activities and are potential preservatives in soy sauce fermentation.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5651
Author(s):  
Tzung-Hsun Tsai ◽  
Chi-I Chang ◽  
Ya-Ling Hung ◽  
Wen-Cheng Huang ◽  
Hsiang Chang ◽  
...  

Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify bioactive compounds from bitter melon leaf. Ethanolic extract of bitter melon leaf was separated into five subfractions by open column chromatography. Subfraction-5-3 significantly inhibited P. gingivalis-induced interleukin (IL)-8 and IL-6 productions in human monocytic THP-1 cells and then was subjected to separation and purification by using different chromatographic methods. Consequently, 5β,19-epoxycucurbita-6,23(E),25(26)-triene-3β,19(R)-diol (charantadiol A) was identified and isolated from the subfraction-5-3. Charantadiol A effectively reduced P. gingivalis-induced IL-6 and IL-8 productions and triggered receptors expressed on myeloid cells (TREM)-1 mRNA level of THP-1 cells. In a separate study, charantadiol A significantly suppressed P. gingivalis-stimulated IL-6 and tumor necrosis factor-α mRNA levels in gingival tissues of mice, confirming the inhibitory effect against P. gingivalis-induced periodontal inflammation. Thus, charantadiol A is a potential anti-inflammatory agent for modulating P. gingivalis-induced inflammation.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Nedhal A. Al-Douri ◽  
Randa N. Haddadin ◽  
Ashok K. Shakya ◽  
Ghaleb A. Oriquat

Background. Vicia faba is a plant that belongs to the family Fabaceae. Cotyledons of this plant produce compounds called phytoalexins as a result of fungal and bacterial infection or stress factors. The phytoalexins are furanoacetylenic compounds. They include wyerone, wyerol, wyerone acid, their dihydro derivatives, and wyerone epoxide. These compounds have antimicrobial activities mainly against fungi. Objective. The purpose of this study was to elucidate the biogenetic conversion of wyerone and dihydrowyerone to wyerone epoxide in V. faba and to investigate the antibacterial activities of some of these phytoalexins. Materials and Methods. Seeds of Vicia faba were used. Labelled wyerone and dihydrowyerone were obtained by treating CuCl2-induced cotyledons with sodium (2-14C) acetate and separated by TLC and HPLC. Labelled wyerone and dihydrowyerone were then applied to induced bean cotyledons to establish any possible interconversion to wyerone epoxide. Antibacterial activity of wyerone, wyerone acid, and wyerone epoxide was investigated by disc diffusion test against a panel of microorganisms. Zones of inhibition were reported. Results. The radiolabeling studies showed that 12.4% of 14C-wyerone, and 6.01% of 14C-dihydrowyerone were incorporated into wyerone epoxide. This indicates that wyerone epoxide was most probably derived from wyerone and dihydrowyerone. In addition, a new compound, 11-hydroxywyerone was isolated for the first time. Additionally, this study showed that wyerone, wyerone epoxide, and wyerone acid had no antibacterial activity against Gram-negative bacteria but were active against Gram-positive bacteria.


2013 ◽  
Vol 8 (5) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Waranyoo Phoolcharoen ◽  
Sireerat Sooampon ◽  
Boonchoo Sritularak ◽  
Kittisak Likhitwitayawuid ◽  
Jintakorn Kuvatanasuchati ◽  
...  

Oxyresveratrol, a compound in the heartwood of Artocarpus lakoocha Roxb and other medicinal plants, has been shown to have various biological activities. However, these have not been studied in periodontal research. In this study, we investigated whether oxyresveratrol has antibacterial activity against the predominant perio-pathogenic bacteria Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Moreover, the anti-inflammatory properties of oxyresveratrol were studied in LPS-stimulated human periodontal ligament (hPDL) cells. The antibacterial activity of oxyresveratrol on P. gingivalis and A. actinomycetemcomitans was initially evaluated using a disc diffusion test. The anti-bacterial strength of oxyresveratrol was then assessed in vitro by determining the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Furthermore, the effects of oxyresveratrol on the LPS-induced production of inflammatory mediators were measured in hPDL cells. The levels of cytokine mRNA and protein expression were determined using reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that oxyresveratrol exhibited antibacterial activities against P. gingivalis with MIC and MBC values of 0.07 mg/mL and 0.16 mg/mL, respectively. The MIC and MBC values against A. actinomycetemcomitans were 0.08 mg/mL and 0.16 mg/mL, respectively. When examining inflammatory stimulation, LPS treatment strongly induced the expression of pro-inflammatory cytokines in hPDL cells. However, pre-treatment with oxyresveratrol significantly inhibited the expression of IL-6 and IL-8 at both the mRNA and protein levels. The IL-1β mRNA level was suppressed by oxyresveratrol, but the level of secreted IL-1β protein was not detectable using ELISA. The results of the present study indicate that oxyresveratrol is a potential candidate for use as an anti-periodontitis agent because of its anti-bacterial activity against the main oral pathogens related to periodontal disease and its anti-inflammatory activity in LPS-stimulated hPDL cells.


2020 ◽  
Vol 83 (2) ◽  
pp. 331-337
Author(s):  
WENYUE WANG ◽  
RUI WANG ◽  
GUIJU ZHANG ◽  
FANGLI CHEN ◽  
BAOCAI XU

ABSTRACT Naturally occurring monoglyceride esters of fatty acids have been associated with a broad spectrum of antimicrobial activities. We used an automated turbidimetric method to measure the MIC and assess the antimicrobial activity of five monoglycerides (monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin) against pathogenic strains of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial activity of monocaprin was highest because its carbon chain is shorter than those of other monoglycerides. The MICs of monocaprin against S. aureus, B. subtilis, P. aeruginosa, and E. coli were 0.32, 0.32, 2.5, and 2.5 mg/mL, respectively. Monocaprin had antibacterial activity under neutral and alkaline conditions (pH 7.0 to 9.0) but had no inhibitory effect on S. aureus, B. subtilis, and E. coli under weakly acidic conditions (pH 6.0). The antibacterial mechanism of monocaprin against gram-positive strains (S. aureus and B. subtilis) resulted from destruction of the cell membrane. In contrast, the antibacterial activity of monocaprin against gram-negative strains (P. aeruginosa and E. coli) was attributed to damage to lipopolysaccharides in the cell walls. Because of its inhibitory effect on both gram-positive and gram-negative bacteria, monocaprin could be used as an antibacterial additive in the food industry. HIGHLIGHTS


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Aman Khan ◽  
Gul Jan ◽  
Afsar Khan ◽  
Farzana Gul Jan ◽  
Ali Bahadur ◽  
...  

The utilization of medicinal plants to treat infectious disease is a common practice in developing countries worldwide. The present study was aimed at evaluating the crude extracts of Ephedra gerardiana (root and stem) with different chemicals for antioxidant and antimicrobial (fungal and bacterial) potential. The results revealed that the ethyl acetate fractions of E. gerardiana (root and stem) have significant free radical scavenging potential with values 2.96±0.39 and 2.73±0.84 while n-butanol and aqueous fractions showed IC502.69±0.26 and 3.44±0.69 µg/ml in stem. Furthermore, crude extract and fractions also revealed promising antibacterial activities against all tested microbial strains while aqueous fraction showed no activities against Bacillus subtilis, Kleibsiella pneumoniae, and Pseudomonas aeruginosa. Interestingly, all crude extracts and fractions were nonactive against fungal strain, Aspergillus niger and Aspergillus flavus, as compare to control. In summary, the Ephedra gerardiana (root and stem) extract and fraction possess antioxidant activities, which might be helpful in preventing or slowing the progress of various oxidative stresses, suggested to be a strong pharmaceutical agent.


Author(s):  
Shilpa Jain ◽  
Varsha Dayma ◽  
Poonam Sharma ◽  
Amit Bhargava ◽  
Prabhat K. Baroliya ◽  
...  

Background: Hydroxytriazenes and their derivatives have been studied for the biological and pharmacological applications in the past few years. These compounds possess antibacterial, antifungal, anti-inflammatory, analgesic and wound healing activities. In this study, we report the synthesis of ten hydroxytriazenes in two series derived from disubstituted aniline and studied for antimicrobial and anti-inflammatory activities. Methods: For this purpose, 2-methyl-5-chloroaniline and 2-trifluoromethyl-5-chloroaniline were used to synthesize compounds A1-5 and B1-5 series, respectively. All compounds were synthesized by the reported method which involves three steps of the method (i) Reduction, (ii) Diazotization, (iii) Coupling. All synthesized compounds were characterized by various techniques CHN elemental analysis, FTIR, 1H NMR, and MASS spectral analysis. The antibacterial activities of the compounds were screened against S. aureus, S. pyogenes, E. coli, P. aeruginosa, and antifungal activities were against C. albicans, A. clavatus by the zone of inhibition method. In addition, anti-inflammatory activity was also evaluated by carrageenan-induced paw edema method and results were reported as % inhibition. Results: All the synthesized compounds were obtained in pure form and their spectral data are in good agreement with their structure. The synthesized compounds have shown good antimicrobial activity and zone of inhibition was ranging 21 to 24 mm. Further antiinflammatory effect of the compounds was 96.58 to 98.71 % inhibition. Conclusion: The results of the present study indicate that chloro and trifluoromethyl substitution at hydroxytriazenes skeleton could improve anti-inflammatory and antimicrobial activities.


2017 ◽  
Vol 32 (6) ◽  
pp. 615-627 ◽  
Author(s):  
Zhengmei Huang ◽  
Shenchun Wang ◽  
Ningtao Wang ◽  
Xiaofei Ma ◽  
Junu Karki ◽  
...  

The aim of this study was to evaluate the properties of the sustained release and antibacterial activity of the ornidazole-drug-loaded membranes using poly[(ethylene glycol)-caprolactone-lactide] (PCLA2575) as membrane material. Ornidazole-loaded membranes were prepared by solvent casting method with the proportion of 5 wt%, 8 wt%, and 10 wt%, respectively. In vitro drug release properties were determined by ultraviolet spectrophotometric method. The antibacterial activities against Streptococcus mutans and Fusobacterium nucleatum in vitro were observed on solid culture medium. The membrane had the high drug loadings and slow-release performance. Drug release time was shortened with the increase in the content of ornidazole, but all of them can achieve more than 7 days. The membrane had strong inhibitory effect on both S. mutans and F. nucleatum. As drug content increased, the antibacterial activities also increased. The membrane had better inhibitory effect on F. nucleatum than S. mutans. Therefore, the ornidazole drug-loaded membrane is expected to be used for the treatment of periodontal disease because of the obvious effect of periodontal pathogens inhibition and good sustained-release performance.


Medicina ◽  
2021 ◽  
Vol 57 (7) ◽  
pp. 641
Author(s):  
Seong-Hee Moon ◽  
Ju-Lee Son ◽  
Seong-Jin Shin ◽  
Seung-Han Oh ◽  
Seong-Hwan Kim ◽  
...  

Background and Objectives:Asplenium incisum, a natural plant, is known to possess numerous pharmacological and biochemical properties. However, the inhibitory effect of A. incisum against Porphyromonas gingivalis and other factors related to periodontal disease have not yet been demonstrated. This study aimed to investigate the potential of A. incisum extract as a phytotherapeutic candidate for improving periodontal diseases by assessing its antibacterial, anti-inflammatory, and anti-osteoclastogenic activities. Materials and Methods: The inhibition of proliferation of P. gingivalis by A. incisum and the sustainability of its antibacterial activity were evaluated in this study. The production of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and nitric oxide (NO) from lipopolysaccharide-stimulated RAW 264.7 cells was assessed using an enzyme-linked immunosorbent assay. To identify the anti-osteoclastogenic activity, tartrate-resistant acid phosphatase (TRAP) staining and TRAP activity analyses were performed on bone marrow macrophages. Results: The proliferation of P. gingivalis was significantly inhibited by A. incisum (p < 0.001), and the antibacterial activity was sustained for up to 3 days. A. incisum showed anti-inflammatory activities by significantly decreasing the release of TNF-α, IL-6 (p < 0.05), and NO (p < 0.01). In addition, A. incisum significantly suppressed TRAP-positive cells and TRAP activity (at 30 μg/mL, p < 0.01) without causing any cytotoxicity (p > 0.05). Conclusions:A. incisum showed antibacterial, anti-inflammatory, and anti-osteoclastogenic activities, suggesting it has strong therapeutic potential against periodontal diseases.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2506
Author(s):  
Yi Hong ◽  
Xiongli Liu ◽  
Huijuan Wang ◽  
Min Zhang ◽  
Minyi Tian

Hedychium puerense, a perennial rhizomatous herb, is used as an ornamental, medicinal, and edible plant in Yunnan Province, China. Essential oils from Hedychium plants are widely used in perfumes and traditional medicine, but there are no studies on the constituents and bioactivities of H. puerense essential oil (EO). Therefore, this study was designed to explore the chemical composition, antibacterial, enzyme-inhibitory, and anti-inflammatory activities of H. puerense rhizome EO. The gas chromatography with flame ionization or mass selective detection (GC-FID/MS) results indicated that H. puerense EO was mainly composed of linalool (26.5%), β-pinene (18.6%), γ-terpinene (12.1%), terpinen-4-ol (7.7%), α-pinene (5.8%), sabinene (4.9%), E-nerolidol (4.1%), and p-cymene (3.6%). For biological activities, H. puerense EO displayed broad-spectrum antibacterial properties against Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli with diameter of inhibition zone (DIZ) values ranging from 7.44 to 10.30 mm, a minimal inhibitory concentration (MIC) of 3.13–6.25 mg/m), and a minimal bactericidal concentration (MBC) of 3.13–12.50 mg/mL. Moreover, the EO significantly inhibited acetylcholinesterase (AChE) (IC50 = 0.94 ± 0.02 mg/mL) and butyrylcholinesterase (BChE) (IC50 = 1.32 ± 0.06 mg/mL) activities, and exhibited a moderate inhibitory effect on α-glucosidase (IC50 = 5.42 ± 0.32 mg/mL) and tyrosinase (IC50 = 3.23 ± 0.21 mg/mL). Furthermore, the EO significantly suppressed the secretion of the pro-inflammatory mediator, nitric oxide (NO) (99.23 ± 0.26%), cytokines tumor necrosis factor-α (TNF-α) (97.14 ± 0.11%), and interleukin-6 (IL-6) (82.42 ± 0.16%) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells at 250 μg/mL without cytotoxicity. Hence, H. puerense EO can be considered a bioactive, natural product that has great potential for utilization in the fields of food, cosmetics, and pharmaceutics.


Sign in / Sign up

Export Citation Format

Share Document