A New Low Voltage High Performance Dual Port 7-CNT SRAM Cell with Improved Differential Reference Based Sense Amplifier

Author(s):  
Pula Lakshmi Kartik ◽  
Kankanala Balakrishna ◽  
Musala Sarada ◽  
Avireni Srinivasulu
2005 ◽  
Vol 40 (2) ◽  
pp. 507-514 ◽  
Author(s):  
A. Conte ◽  
G.L. Giudice ◽  
G. Palumbo ◽  
A. Signorello

2018 ◽  
Vol 14 (1) ◽  
pp. 157-169 ◽  
Author(s):  
W. Steve Ngueya ◽  
Jean-Michel Portal ◽  
Hassen Aziza ◽  
Julien Mellier ◽  
Stephane Ricard

2010 ◽  
Vol 31 (10) ◽  
pp. 105001 ◽  
Author(s):  
Liu Jiang ◽  
Wang Xueqiang ◽  
Wang Qin ◽  
Wu Dong ◽  
Zhang Zhigang ◽  
...  

Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


1999 ◽  
Vol 35 (2) ◽  
pp. 112 ◽  
Author(s):  
Y. Moisiadis ◽  
I. Bouras ◽  
C. Papadas ◽  
J.-P. Schoellkopf
Keyword(s):  

Author(s):  
Francesco Centurelli ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti ◽  
Gaetano Palumbo

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4144
Author(s):  
Yatai Ji ◽  
Paolo Giangrande ◽  
Vincenzo Madonna ◽  
Weiduo Zhao ◽  
Michael Galea

Transportation electrification has kept pushing low-voltage inverter-fed electrical machines to reach a higher power density while guaranteeing appropriate reliability levels. Methods commonly adopted to boost power density (i.e., higher current density, faster switching frequency for high speed, and higher DC link voltage) will unavoidably increase the stress to the insulation system which leads to a decrease in reliability. Thus, a trade-off is required between power density and reliability during the machine design. Currently, it is a challenging task to evaluate reliability during the design stage and the over-engineering approach is applied. To solve this problem, physics of failure (POF) is introduced and its feasibility for electrical machine (EM) design is discussed through reviewing past work on insulation investigation. Then the special focus is given to partial discharge (PD) whose occurrence means the end-of-life of low-voltage EMs. The PD-free design methodology based on understanding the physics of PD is presented to substitute the over-engineering approach. Finally, a comprehensive reliability-oriented design (ROD) approach adopting POF and PD-free design strategy is given as a potential solution for reliable and high-performance inverter-fed low-voltage EM design.


Sign in / Sign up

Export Citation Format

Share Document