“Evaluation of cholesterol lowering efficacy and antibacterial potential of probiotics: An In vitro study”

2020 ◽  
Vol 18 ◽  
Author(s):  
Ayisha Aman ◽  
Tooba Shamim ◽  
Ayesha Siddiqui ◽  
Suad Naheed

Background and Objectives: Probiotics are nonpathogenic and beneficial viable microorganisms that exhibit potential health welfare for human beings. Probiotics are found in various food products. They also occur as natural microflora in the intestine of mammals. Main goal of this study was to isolate probiotics conferring antibacterial activity and cholesterol lowering ability from different fruits. Materials and Method: Present research reveals the usefulness of probiotics, in which twenty one bacterial cultures were isolated from different fruit samples including figs, coconut water and grapes. These strains were explored for their antibacterial and cholesterol reduction ability by conducting in vitro experiments. Results and Conclusion: Among twenty one isolates, nine probiotic cultures FgC2, FgC7, FgC14, G2C5, G1C,GrC18 and StCW showed maximum antibacterial activity against different human clinical pathogens. This suggests that these microbes produce inhibitory metabolites which are extracellular and diffusible. For cholesterol assimilation assay, six strains FgC2, FgC7,FgC12, FgC13, GrC7 and GrC18 presented remarkable cholesterol lowering efficacy (up to 98%) when grown in the presence of bile salts. Only potential probiotic cultures were identified and characterized as lactic acid bacteria (LAB), on the basis of Bergey’s Manual of Determinative Bacteriology. Thus this study is helpful to exploit the bioactive and therapeutic potential of beneficial microorganisms so that they can be utilized in the generation of functional food and other health promoting products.

Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 46 ◽  
Author(s):  
Emmanuel Van Acker ◽  
Maarten De Rijcke ◽  
Jana Asselman ◽  
Ilse M. Beck ◽  
Steve Huysman ◽  
...  

Respiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful Karenia brevis and Ostreopsis ovata blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway. Until now, little scientific evidence supported this hypothesis. The current explorative in vitro study investigated both health-affecting and potential health-promoting mechanisms of airborne phycotoxin exposure, by analyzing cell viability effects via cytotoxicity assays and effects on the mTOR pathway via western blotting. To that end, A549 and BEAS-2B lung cells were exposed to increasing concentrations (ng·L−1–mg·L−1) of (1) pure phycotoxins and (2) an extract of experimental aerosolized homoyessotoxin (hYTX). The lowest cell viability effect concentrations were found for the examined yessotoxins (YTXs). Contradictory to the other phycotoxins, these YTXs only induced a partial cell viability decrease at the highest test concentrations. Growth inhibition and apoptosis, both linked to mTOR pathway activity, may explain these effects, as both YTXs were shown to downregulate this pathway. This proof-of-principle study supports the biogenics hypothesis, as specific aerosolizable marine products (e.g., YTXs) can downregulate the mTOR pathway.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3480
Author(s):  
Adriana Maite Fernández-Fernández ◽  
Eduardo Dellacassa ◽  
Tiziana Nardin ◽  
Roberto Larcher ◽  
Adriana Gámbaro ◽  
...  

The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Author(s):  
Luigi de Nardo ◽  
Ilaria Alfieri ◽  
Andrea Lorenzi ◽  
Enrica Saino ◽  
Livia Visai ◽  
...  

2016 ◽  
Vol 30 (6) ◽  
pp. 1192-1198 ◽  
Author(s):  
Esra Yesiloz Gokcen ◽  
Firdevs Tulga Oz ◽  
Berrin Ozcelik ◽  
Ayse Isıl Orhan ◽  
Betul Memis Ozgul

2019 ◽  
Vol 10 (2) ◽  
pp. 1049-1053 ◽  
Author(s):  
Geetha RV ◽  
John Rozar Raj B ◽  
Lakshmi Thangavelu

To conduct a study regarding the antibacterial activity of essential oils against bacteria causing Caries. Essential oils are distillates of the volatile compounds of a plant’s secondary metabolism and may act as photoprotective agents. Their curative effect has been known since antiquity. It is based on a variety of pharmacological properties which are specific for each plant species. The mouth contains a variety of oral bacteria, but only a few species of bacteria are believed to cause dental caries. Antibacterial activity of the three essential oils, Rosemary oil, Holy basil oil, Thyme oil was screened against Streptococcus mutans, using disc diffusion technique. The rosemary oil was more effective against Streptococcus mutans with a zone of inhibition of 52 mm diameter (at concentration 200 µl), Rosemary oil showed a zone of inhibition of 44 mm diameter and with thyme oil, the zone diameter was 30 mm. The results of this study showed that the essential oils at different concentrations exhibited antibacterial activity against the bacterial species tested.


2017 ◽  
Vol 7 (1) ◽  
pp. 48
Author(s):  
Qurni Restiani ◽  
Mandojo Rukmo ◽  
Devi Eka Juniarti

Background: The leaves of neem (Azadirachta indicia) is one of herbal medicine that recommended as an alternative material of root canal irrigants. The active ingredients of neem leaves such as alkaloids, tannins, saponins and flavonoids has been proven to have antibacterial activity against E. faecalis. The ideal properties of an alternative material of root canal irrigants is not only have antibacterial activity but also is not toxic to the tissues, but the toxicity of neem leaves remains unclear until now. Objective: The aims of this study to determine the toxicity effect of neem leaves extract in specific concentration. Methods: This research was an experimental laboratory in vitro study of baby hamster kidney fibroblast (BHK-21). The neem leaves extract was made by maceration method using ethanol 96% and certain dilution performed to obtain various concentrations. Cytotoxicity test was conducted by MTT assay and the optical density was measured using ELISA reader at wavelength of 620 nm. Then, the optical density values were calculated using the formula for determining the number of survival fibroblasts after tested. Results: The percentage of survival fibroblast at concentration of 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95, and 100% in sequence were 71.3%, 64, 2%, 62%, 60.2%, 40.1%, 36.3%, 36.7%, 29%, 28.4%, 27.5%, and 25.6% . Conclusion: The extract of neem leaves (Azadirachta indica) has cytotoxic effects at concentration of 70% up to 100%.


Sign in / Sign up

Export Citation Format

Share Document