Potential Antibacterial Activity of Yemeni Sidr Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes

2021 ◽  
Vol 19 ◽  
Author(s):  
Mohammad A. Al-kafaween ◽  
Abu Bakar Mohd Hilmi ◽  
Hamid A. Nagi Al-Jamal ◽  
Rania M. Al-Groom ◽  
Nour A. Elsahoryi ◽  
...  

Background: Sidr honey has been reported to exhibit antimicrobial activity against numerous pathogenic bacteria making this honey a promising functional food for the treatment of wounds or stomach ulcers. Objective: The purpose of this study was to investigate the effect of Sidr honey against P. aeruginosa and S. pyogenes. Methods: Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) for Sidr honey were determined by the broth dilution method. The growth curve of both bacteria with MIC, half-MIC and quarter-MIC were monitored by optical density (at OD570). The time-kill curve was used to determine the bacteriostatic and bactericidal activity of Sidr honey on both bacteria by plotting colony forming unit (CFUs) versus time. The effect of Sidr honey on the ultrastructure of the P. aeruginosa and S. pyogenes was investigated using scanning electron microscopy (SEM). The effect of Sidr honey on the expression of virulence genes in both bacteria was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: The results showed that Sidr honey possessed the lowest MIC value against P. aeruginosa and S. pyogenes with 12.5 % (w/v) and 20 % (w/v) respectively. In addition, the MBC value for Sidr honey was found to be 20% (w/v) and 25% (w/v) against P. aeruginosa and S. pyogenes respectively. Growth curves conducted with MIC Sidr honey resulted in no growth of P. aeruginosa and S. pyogenes. Growth curves with half-MIC Sidr honey resulted in a reduced growth rate and reduction in overall cell number in both bacteria over a period of 24 h, compared with cells grown without honey. In time-kill curve, treatment of P. aeruginosa and S. pyogenes with Sidr honey for 8 hours resulted in decreases of 4-log reduction (P < 0.05) in total viable counts (TVCs). SEM analysis revealed that there were marked changes in the bacterial cell morphology for both bacteria following treatment with Sidr honey. These changes included the appearance of irregular shapes, incomplete cell division, and swelling cells. The RT-qPCR results showed that the expression of algD, oprF, fleN, fleQ, fleR, fliA, and fliC in P. aeruginosa decreased 0.43-fold, 0.38-fold, 0.41-fold, 0.51-fold, 0.40-fold, 0.61-fold, and 0.39-fold respectively after exposure to Sidr honey. Meanwhile the expression of sof, sfbl, and scpA in S. pyogenes decreased 0.18-fold, 0.21-fold, and 0.28-fold respectively after treated with Sidr honey. Conclusion: Using varying methods to evaluate the planktonic integrity, this study demonstrated that Sidr honey has antibacterial activity against both bacteria and has potential as a therapeutic agent for microbial infection particularly against these two organisms. To our knowledge, this study is the first to indicate that Sidr honey is effective at inducing cell lysis and identify targets genes, at the genetic level, that might be involved in this process.

10.3823/854 ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad A. Alkafaween ◽  
Hamid A. Nagi Al-Jamal ◽  
Abu Bakar Mohmd Hilmi

Background: The purpose of this study was to investigate antibacterial activity of three varieties of Malaysian honey; Tualang honey (TH), Gelam honey (GH), and Acacia honey (AH) against Escherichia coli. Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the honey samples against E. coli were determined by the broth microdilution assay in the presence and absence of catalase enzyme. The mode of inhibition of honey samples against E. coli was investigated by the effect of time on viability. Impacts of the honeys on the expression profiles of the selected genes of E. coli were examined using RT-qPCR analysis. Results: The results showed that TH and GH honey possessed lowest MIC and MBC values against E. coli with 20% and 25% (w/v) respectively. Highest MIC and MBC values were observed by AH honey against E. coli with 25% (w/v) and 50% (w/v) values respectively. Among the tested honeys, TH and GH exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. Time–kill curve demonstrated a bactericidal rather than a bacteriostatic effect; with a 2-log reduction estimated within 540 min. Viable cells were not recovered after 9 hours exposure to MIC of all honey-treated. The RT-qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Conclusion: This study demonstrates that Malaysian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.


Author(s):  
Mohammad Abdulraheem Al-Kafaween ◽  
Hamid Ali Al-Jamal ◽  
Abu Bakar Mohd Hilmi ◽  
Nour Amin Elsahoryi ◽  
Norzawani Jaffar ◽  
...  

Background and Objectives: Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The study aimed to investigate the effect of TH against Pseudomonas aeruginosa and Streptococcus pyogenes. Materials and Methods: The effect of TH on both bacteria was investigated using MIC, MBC, growth curve, time-kill curve, scanning electron microscopy (SEM) and RT-qPCR. Results: The MIC of TH against P. aeruginosa and S. pyogenes was 18.5% (w/v) and 13% (w/v) respectively and MBC 90 was 25% (w/v) for both bacteria. Spectrophotometric readings of at least 90% inhibition yielded MIC values of TH, 18.5% (w/v) and 15% (w/v) for P. aeruginosa and S. pyogenes respectively. A time–kill curve demonstrated a bactericidal with a 4-log reduction estimated within 8 hours. Using SEM, loss of structural integrity and marked changes in cell shape were observed. RT-qPCR analysis showed that TH reduced the pattern of gene expression in both bacteria, with a trend toward reduced expression of the virulence genes of interest. Conclusion: This study suggests that TH could potentially be used as an alternative therapeutic agent for microbial infection particularly against these two organisms.


EKOLOGIA ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 31-39
Author(s):  
Oom Komala ◽  
. Ismanto ◽  
Muhammad Alan Maulana

Streptococcus pyogenes is one of the pathogenic bacteria that causes pharyngitis. Natural treatment to overcome these problems is to use cardamom seeds. The purpose of this study was to test the antibacterial activity, determine the concentration of inhibitory zone and phytochemical compounds from  ethanol 96% extract of Java cardamom seeds (Amomum compactum Soland. Ex Maton) against Streptococcus pyogenes. The method is used   solid dilution and paper disc diffusion method. The solid dilution method is used for the Minimum Inhibitory Concentration (MIC) test with a concentration of 1.25%, 2.5%, 5% and 7.5% while the paper diffusion method is used for the Inhibition zone Diameter (IZD)  using five treatments namely three concentrations of ethanol 96% extract of Java cardamom seeds (7.5%, 10% and 12%), one positive control of amoxicillin 0.01 mg/mL and one negative control of sterile distilled water. IZD data were  analyzed using ANOVA with a confidence level of 95% and α = 0.05 and Duncan's further tests to determine differences between treatments. The results showed that the MIC  was at a concentration of 7.5% while for the IZD test which had the highest activity there was a concentration of 12% with an average inhibition diameter of 12.03 ± 0.14 mm. In addition, ethanol 96% extract of Java cardamom seeds contain alkaloids, flavonoids, terpenoids and tannins which function in antibacterial activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Bishnu P. Marasini ◽  
Pankaj Baral ◽  
Pratibha Aryal ◽  
Kashi R. Ghimire ◽  
Sanjiv Neupane ◽  
...  

The worldwide increase of multidrug resistance in both community- and health-care associated bacterial infections has impaired the current antimicrobial therapy, warranting the search for other alternatives. We aimed to find thein vitroantibacterial activity of ethanolic extracts of 16 different traditionally used medicinal plants of Nepal against 13 clinical and 2 reference bacterial species using microbroth dilution method. The evaluated plants species were found to exert a range ofin vitrogrowth inhibitory action against the tested bacterial species, andCynodon dactylonwas found to exhibit moderate inhibitory action against 13 bacterial species including methicillin-resistantStaphylococcus aureus, imipenem-resistantPseudomonas aeruginosa, multidrug-resistantSalmonella typhi, andS. typhimurium. The minimum inhibitory concentration (MIC) values of tested ethanolic extracts were found from 31 to >25,000 μg/mL. Notably, ethanolic extracts ofCinnamomum camphora, Curculigo orchioides, andCurcuma longaexhibited the highest antibacterial activity againstS. pyogeneswith a MIC of 49, 49, and 195 μg/mL, respectively; whereas chloroform fraction ofCynodon dactylonexhibited best antibacterial activity againstS. aureuswith a MIC of 31 μg/mL. Among all,C. dactylon, C. camphora, C. orchioides, andC. longaplant extracts displayed a potential antibacterial activity of MIC < 100 μg/mL.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1553 ◽  
Author(s):  
Na Li ◽  
Dan Liu ◽  
Jiang-Kun Dai ◽  
Jin-Yi Wang ◽  
Jun-Ru Wang

Background: Based on our previous work, we found that 10-methoxycanthin-6-one displayed potential antibacterial activity and quaternization was an available method for increasing the antibacterial activity. Here, we explored the antibacterial activity of quaternized 10-methoxy canthin-6-one derivatives. Methods and Results: Twenty-two new 3-N-benzylated 10-methoxy canthin-6-ones were designed and synthesized through quaternization reaction. The in vitro antibacterial activity against three bacteria was evaluated by the double dilution method. Moreover, the structure–activity relationships (SARs) were carefully summarized in order to guide the development of antibacterial canthin-6-one agents. Two highly active compounds (6p and 6t) displayed 8-fold superiority (MIC = 3.91 µg/mL) against agricultural pathogenic bacteria R. solanacearum and P. syringae compared to agrochemical streptomycin sulfate, and showed potential activity against B. cereus. Moreover, these two compounds exhibited good “drug-like” properties, low cytotoxicity, and no inhibition on seed germination. Conclusions: This work provides two new effective quaternized canthin-6-one derivatives as candidate bactericide, promoting the development of natural-sourced bactericides and preservatives.


Author(s):  
Na Li ◽  
Jiang-Kun Dai ◽  
Dan Liu ◽  
Jin-Yi Wang ◽  
Jun-Ru Wang

Natural products are an important source of antibacterial agents. Canthin-6-one alkaloids have displayed potential antibacterial activity based on our previous work. In order to improve the activity, twenty-two new 3-N-benzylated 10-methoxy canthin-6-ones were designed and synthesized through quaternization reaction. The in vitro antibacterial activity against three bacteria was evaluated by double dilution method. Four compounds (6f, 6i, 6p and 6t) displayed 2-fold superiority (minimum inhibitory concentration (MIC) = 3.91 &micro;g/mL) against agricultural pathogenic bacteria R. solanacearum and P. syringae than agrochemical propineb. Moreover, the structure&ndash;activity relationships (SARs) were also carefully summarized in order to guide the development of antibacterial canthin-6-one agents.


Author(s):  
Bhavani J ◽  
Sunil Kumar Prajapati ◽  
Ravichandran S

Opportunistic bacterial infections are common in the various parts of human body. In recent years bacterial species have shown resistance against a number of synthetic drugs. This study measured the antibacterial activity of bacterial strains against five common pathogenic bacteria related strains. Cup plate method and two fold serial dilution method were used to evaluated by antibacterial activity by the help of different bacterial related strains. The results revealed that Cisplatin (CIP) using natural as a polymer showed a minimum inhibitory concentration (MIC) at 250 mg/ml to 500 mg/ml of the broth against all bacterial strains. CIP using natural as a polymer was prepared different doses1000 μg/ml and 2000 μg/ ml and measured zone of inhibition dose dementedly reduced when compared to standard. The CIP using natural as a polymer exhibited strong anti-bacterial activity against five different species of bacteria and this may be attributed to various active components. Our research work has been indicated Nanoparticles containing CIP using natural as a polymer formulated for the enhanced anti-cancer activity through antimicrobial mechanism. 


Author(s):  
Nilushi Indika Bamunuarachchi ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: With the growing incidence of microbial pathogenesis, several alternative strategies have been developed. The number of treatments using naturally (e.g., plants, algae, fungi, bacteria, and animals) derived compounds has increased. Importantly, marine-derived products have become a promising and effective approach to combat the antibiotic resistance properties developed by bacterial pathogens. Furthermore, augmenting the sub-inhibitory concentration of the naturally-derived antimicrobial compounds (e.g., hydroxycinnamic acids, terpenes, marine-derived polysaccharides, phenolic compounds) into the naturally derived extracts as a combination therapy to treat the bacterial infection has not been well studied. Objective: The present study was aimed to prepare green algae Ulva lactuca extract and evaluate its antibacterial activity towards Gram-positive and Gram-negative human pathogenic bacteria. Also, revitalize the antibacterial efficiency of the naturally-derived antimicrobial drugs and conventional antibiotics by augmenting their sub-MIC to the U. lactuca extracts. Methods: Extraction was done using a different organic solvent, and its antibacterial activity was tested towards Gram-positive and Gram-negative pathogens. The minimum inhibitory concentration (MIC) of U. lactuca extracts has been determined towards pathogenic bacteria using the micro broth dilution method. The viable cell counting method was used to determine the minimum bactericidal concentration (MBC). The fractional inhibitory concentration (FIC) assay was utilized to examine the combinatorial impact of sub-MIC of two antibacterial drugs using the micro broth dilution method. The chemical components of the extract were analyzed by GC-MS analysis. Results: Among all the extracts, n-hexane extract was found to show effective antibacterial activity towards tested pathogens with the lowest MIC and MBC value. Furthermore, the n-hexane extracts have also been used to enhance the efficacy of the naturally-derived (derived from plants and marine organisms) compounds and conventional antibiotics at their sub-inhibitory concentrations. Most of the tested antibiotics and natural drugs at their sub-MIC were found to exhibit synergistic and additive antibacterial activity towards the tested bacterial pathogens. Conclusions: The augmenting of U. lactuca n-hexane extracts resulted in synergistic and additive bactericidal effects on Gram-positive and Gram-negative human pathogenic bacteria. The present study shows a new alternative strategy to revitalize the antimicrobial activity of naturally derived compounds for treating human bacterial pathogens.


2018 ◽  
Vol 23 (3) ◽  
pp. 131
Author(s):  
Suzana Kristy Satriani Fofied ◽  
Agus Sabdono ◽  
Diah Permata Wijayanti

Staphylococcus aureus and Escherichia coli are pathogenic bacteria agent of many human diseases. Those bacteria infect in various levels and also been antibiotic resistants. Bacterial resistance has become a serious global problem. The purposes of this study were to isolate and identify the symbiotic bacteria of the Sea Urchin that have an antibacterial activity of the Strain Multi-Drug Resistant (MDR) against Staphylococcus aureus and Escherichia coli. Sea Urchin was taken from Panjang island, Jepara Indonesia at 2-3 m depth. The symbiotic bacteria were isolated from Sea Urchin by using dilution method and spread plate method. Phenotypic characteristics was observed on colony shape, color and texture of growing bacteria. While the streak method was used to purify bacterial symbion. The antibacterial activity test was performed using overlay method. The results showed that 3 out of 37 isolates have antibacterial activity against Staphylococcus aureus and Escherichia coli. The BB.03.35 isolate was selected for molecular identification due to the largest inhibitory zone diameter. The sequence of this bacterium showed 97% homology and closely related to Pseudoalteromonas flavipulchra.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4581
Author(s):  
Viktor Zvarych ◽  
Maryna Stasevych ◽  
Volodymyr Novikov ◽  
Eduard Rusanov ◽  
Mykhailo Vovk ◽  
...  

The development and spread of resistance of human pathogenic bacteria to the action of commonly used antibacterial drugs is one of the key problems in modern medicine. One of the especially dangerous and easily developing antibiotic resistant bacterial species is Staphylococcus aureus. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones 22–38 have been developed as novel effective antistaphylococcal agents. These compounds have been obtained by sequential conversion of 1-amino-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (1) and 1-amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (2) into the corresponding amides 5–21, followed by subsequent endo-cyclization under the influence of sodium nitrite in acetic acid. Evaluation of the antimicrobial activity of the synthesized compounds against selected species of Gram-positive and Gram-negative bacteria as well as pathogenic yeasts of the Candida genus has been carried out by the serial dilution method. It has been established that anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones exhibit selective antibacterial activity against Gram-positive bacteria. Eight, six and seven, out of seventeen compounds tested, effectively inhibited the growth of S. aureus ATCC 25923, S. aureus ATCC 29213 and S. epidermidis ATCC12228, respectively, at a concentration equal to 1 µg/mL or lower. The high antistaphylococcal potential of the most active compounds has been also confirmed against clinical isolates of S. aureus, including the MRSA strains. However, bacteria of the Staphylococcus genus have demonstrated apparent resistance to the novel compounds when grown as a biofilm. None of the four selected compounds 3234 and 36 at a concentration of 64 µg/mL (128 or 256 × MIC—against planktonic cells) has caused any decrease in the metabolic activity of the staphylococcal cells forming the biofilm. The kinetic time–kill assay revealed some important differences in the activity of these substances. Compound 33 is bacteriostatic, while the other three demonstrate bactericidal activity.


Sign in / Sign up

Export Citation Format

Share Document