Isolation, Screening and Antimicrobial Activity of Aeromonas hydrophila from Spoiled Vegetables and Biochemical Analysis of Estuarine Microbial Sediments

2020 ◽  
Vol 9 (3) ◽  
pp. 192-197
Author(s):  
Kumar Swathi ◽  
Duraisamy Ramachandhiran ◽  
Raju Murali ◽  
Veerasamy Vinothkumar

Background: Aeromonas hydrophila is a heterotrophic, Gram-negative, rod-shaped, facultative anaerobic, non-spore forming bacteria that are autochthonous and widely dispersed in marine environments. The study aims at investigating the screening of Aeromonas hydrophila from spoiled vegetables and the sediment sample collected from three different estuaries located in the Bay of Bengal (Vedharanyam, Parangipettai and Pichavaram, Tamilnadu, India) for the presence of enzymes and antimicrobial activities. Objective: Isolation, enzyme screening, antimicrobial activity of Aeromonas hydrophila from spoiled vegetables and three different estuarine microbial sediment samples for the purpose of biochemical and enzymatic analysis. Methods: The bioactive compound produced by this strain was purified by using thin-layer chromatography. Results: The purified isolate of Aeromonas hydrophila strain produces good antimicrobial activity against Aspergillus niger, Candida albicans, Staphylococcus, Klebsiella and pseudomonas species. Conclusion: These isolates producing amylase, protease, lipase, and gelatinase enzymes, which are commercially very important and used in many industries and other biochemical sectors.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Suganthi Appalasamy ◽  
Kiah Yann Lo ◽  
Song Jin Ch'ng ◽  
Ku Nornadia ◽  
Ahmad Sofiman Othman ◽  
...  

Artemisia annuaL., a medicinal herb, produces secondary metabolites with antimicrobial property. In Malaysia due to the tropical hot climate,A. annuacould not be planted for production of artemisinin, the main bioactive compound. In this study, the leaves of threein vitro A. annuaL. clones were, extracted and two bioactive compounds, artemisinin and a precursor, were isolated by thin layer chromatography. These compounds were found to be effective in inhibiting the growth of Gram-positive and Gram-negative bacteria but notCandida albicans. Their antimicrobial activity was similar to that of antibactericidal antibiotic streptomycin. They were found to inhibit the growth of the tested microbes at the minimum inhibition concentration of 0.09 mg/mL, and toxicity test using brine shrimp showed that even the low concentration of 0.09 mg/mL was very lethal towards the brine shrimps with 100% mortality rate. This study hence indicated thatin vitrocultured plantlets ofA. annuacan be used as the alternative method for production of artemisinin and its precursor with antimicrobial activities.


Author(s):  
Sayed Reza Shaffiey ◽  
Sayedeh Fatemeh Shaffiey

Aeromonas hydrophila is a heterotrophic, gram negative bacterium which is primary or secondary cause of ulcers, fin rot, tail rot, and hemorrhagic septicaemia in fish. The treatments for this infection are only restricted to some antibiotics. So, novel materials are being searched for combating with bacterial infections and the resulting consequences. In this chapter, Ag2O/CuO nanocomposites were synthesized chemically and characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM) and transmission electron microscope (TEM). The antimicrobial activities of Ag2O/CuO nanoparticles (NPs), was checked by both well diffusion and turbidometric (spectrophotometric) method. Synthesized nanoparticles exhibited their antimicrobial efficacy in both the standard inhibitory assays; these results thus provide a scope for further research on the application of Ag2O/CuO nanoparticles as disinfectant and/or antibiotic in the fishery industry.


2020 ◽  
Vol 18 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Fatima Benyoucef ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Arrar Zoheir ◽  
Jean Costa ◽  
...  

Background: Antibiotic resistance is today one of the most serious threats to global health, food security and development. Due to the growing number of infections, treatment becomes more difficult, if not impossible, because of the loss of antibiotic efficacy. Objective: In the present investigation, the chemical composition of essential oils of Ammoides verticillata and Satureja candidissima and their synergistic effects on antimicrobial activities were investigated. Methods: The chemical composition of the essential oil was analyzed by Gas Chromatography (GC) and Gas Chromatography-Mass Spectroscopy (GC/MS). The antimicrobial activity of the essential oils was investigated using dilution-agar method against nine bacterial strains three Gram-negative Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Salmonella typhi (ATCC 14028), and six Gram-positive: Staphylococcus aureus (ATCC 43300,) Clostridium sporogenes (ATCC 19404), Bacillus subtilis (ATCC 6633), Enterococcus faecalis (ATCC 7314), Lactobacillus rhamnosus (ATCC 53103) and Bacillus cereus (ATCC 14579). Results: The essential oil of A. verticillata was characterized principally by carvacrol (44,3%), Limonene (19,3%) and p-cymene (19,2%). The constituents identified of S. candidissima essential oil were principally oxygenated monoterpenes represented by pulegone (70,4%). The essential oil of A. verticillata had a good antimicrobial activity against four bacterial strains (Escherichia coli, Salmonella typhi, Lactobacillus rhamnosus and Bacillus cereus) with MIC and MBC values between 0.2-0.4 µl/ml and 0.2-6.2 µl/ml, respectively. While, S. candidissima essential oil had moderate antimicrobial activities against all strains with MIC and MBC values between 1.5-6.2 µl/ml and 6.2-12.5 µl/ml, respectively. The results of antimicrobial activity of essential oils blend presented higher antimicrobial activity against all tested bacteria with MIC and MBC values between 0.3-1.5 µl/ml and 0.4-6.2 µl/ml, respectively. Conclusion: The essential oils blend presented high antimicrobial activity compared to virgin oils. This activity can be due to the association of active compounds such as carvacrol and pulegone. These findings provide a new source of drugs that may help in therapy to lead to the development of a new treatment based on a combination of these essential oils against gram-negative and gram-positive bacteria that continue to pose a threat to public health.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 670 ◽  
Author(s):  
Alzagameem ◽  
Klein ◽  
Bergs ◽  
Do ◽  
Korte ◽  
...  

The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0–7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.


2019 ◽  
Vol 31 (5) ◽  
pp. 1087-1090 ◽  
Author(s):  
Pradip P. Deohate ◽  
Roshani S. Mulani

Microwave irradiative synthesis of triazine substituted pyrazoles i.e. (4-benzylideneamino-6-methyl-[1,3,5]-triazin-2-yl)-(5-methyl-2-substituted benzoyl/isonicotinoyl/cinnamoyl-pyrazol-3-yl)-amines have been achieved by the cyclocondensation of N-(4-benzylideneamino-6-methyl-[1,3,5]-triazin-2-yl)-3-oxo butyramide with substituted acid hydrazides. Synthesis of required butyramide was done by reacting 2,4-diamino-6-methyl-[1,3,5]-triazine with benzaldehyde and then condensing the product with ethyl acetoacetate. Structural investigation of synthesized compounds has been done by chemical transformation, elemental analysis and IR, 1H NMR, mass spectral studies. Study of antitubercular and antimicrobial activity of title compounds against some selected Gram-positive and Gram-negative microorganisms was performed to establish the relationship between structure and activity of compound.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
P. C. Nagajyothi ◽  
K. D. Lee

The eco-friendly synthesis of nanoparticles through various biological means helps to explore various plants for their ability to synthesize silver nanoparticles (AgNPs). Here we have synthesized AgNPs by using rhizome extract ofDioscorea batatasat as well as room temperature (). AgNPs were characterized under UV-vis spectrophotometer, SEM, FTIR, XRD, and EDX. The antimicrobial activity of AgNPs was evaluated on gram positive (B. substilisandS. aureus), gram negative (E. coli), and fungi (S. cerivisaeandC. albicans). At room temperature,S. cerivisaeandC. albicanswere found to be more susceptible to AgNPs than at .


2009 ◽  
Vol 64 (11-12) ◽  
pp. 785-789 ◽  
Author(s):  
Wael A. El-Sayed ◽  
Yasser K. Abdel-Monem ◽  
Nabil M. Yousif ◽  
Nashwa Tawfek ◽  
Mohamed T. Shaaban ◽  
...  

A number of new disubstituted 2,5-thiazolidinone derivatives were synthesized and tested for their antimicrobial activity against Bacillus subtilis (Gram-positive), Pseudomonas aeruginosa (Gram-negative), and Streptomyces species (Actinomycetes). They displayed different degrees of antimicrobial activities or inhibitory actions


2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Poonam Sethi ◽  
Nandhagopal Karmegam

ABSTRACT Artabotrys odoratissimus R.Br.  (Annonaceae) a medium sizes shrub with hooks, sweet smelling flowers and aggregate fruits, was tested for activity against gram negative bacteria. The fruit of the experimental plant was extracted with water, methanol and toluene: methanol (2:1 v/v). Artabotrys fruits showed good antibacterial activity and produced zone of inhibition of 32mm. The methanolic extract of the fruit showed maximum zone of inhibition at 300 ?g/ml against Pseudomonas fluorescens. The present study clearly indicates that A. odoratissimus had a profound antimicrobial   activity and it may be useful in the treatment of various infectious caused by bacteria. Keywords: Artabotrys, Gram Negative Bacteria, Pseudomonas, Zone Of Inhibition


Author(s):  
AJAY PAGHDAL

Introduction- HPTLC uses include phytochemical and biochemical analyzes, ayurvedic medicine quantification and quantification of active ingredients, formational fingerprinting and adulterant testing of formulations. HPTLC can be used as a simple tool for tracking the consistency of plant-based raw plant materials and formulations. The source of many biomarkers is Sammoha Loha Vati. The HPTLC method has been used to classify and measure the bark of leaves and branches. Aim & Objective- Identification and authentication of raw drugs used for Sammoha Loha Vati through HPTLC. Observations- 1. Stationary phase, 2. Mobile phase, 3. Optimization, 4. Preparation of Sample and its use, 5. Separation, 6. Detection. Conclusion and Finding- The use of HPTLC for the screening of pharmaceutical compounds for antimicrobial activities is emerging. Requirements for the testing of new incoming products and their integration into regulatory frameworks are of great significance for the future of HPTLC. Rf Value having at 254 nm Chromatogram, Spot No. [1] Track T1 [0.22], Track T2 [0.22], Rf Value having at 366 nm Chromatogram, Spot No. [1] Track T1 [0.10], Track T2 [0.10], Rf Value having at 540 nm Chromatogram, Spot No.[1] Track T1 [0.10], Track T2 [0.10].


2010 ◽  
Vol 4 (2) ◽  
pp. 24-32
Author(s):  
M. B. I. Kassim ◽  
S. S. Eleya

Atotal of 62 different Streptomyces isolates were recovered from 17 samples of soil collected from different sites of Nineveh Province. Only 23 isolates showed activity against test Gram-positive and Gram-negative bacteria. One isolate showed high antimicrobial activity against Staphylococcus aureus, was selected and identified as Streptomyces lavendulae on the bases of microscopic, morphologic, biochemical tests and its sensitivity to some antibiotics. The bioactive compound produced by S. lavendulae was isolated on TLC plate (Rf 0.85). The UV spectrum of the active compound in methanol showed one peak at 280 nm. From these data it could be concluded that the active compound probably belongs to macrolide antibiotics group.


Sign in / Sign up

Export Citation Format

Share Document