scholarly journals Environmental Impact Evaluation of a Fresh Milk Production

2021 ◽  
Vol 10 (2) ◽  
pp. 149-161
Author(s):  
Yulianti Agustin ◽  
◽  
Miftakhurrizal Kurniawan ◽  
Retno Astuti ◽  
Mohammad Arifur Rahman ◽  
...  

The study aimed to evaluate the waste impact on the environment in fresh milk production activities from the dairy cows rearing on farms to the distribution process of fresh milk to a milk processing factory and fresh milk selling agents, identify the most significant potential for contamination from fresh milk production activities on the environment, and provide alternative improvements based on the most significant environmental impact caused by fresh milk production activities. This research was conducted in a dairy farmer cooperative which is an organization that produces fresh milk. The Life Cycle Assessment (LCA) method was used to evaluate the environmental impact of fresh milk production activities. The analysis was carried out using SimaPro 9.0.0.47 software. The LCA stages carried out were Goal and Scope Definition, Life Cycle Inventory, Life Cycle Impact Assessment (LCIA), and Life Cycle Interpretation. The assessment of improvement alternatives was then analyzed using the pairwise comparison method to determine the highest weight. The results showed that the three most significant impact categories, namely eutrophication, human toxicity soil, and acidification. The biggest contamination from fresh milk production activities occurs in the fresh milk extraction process. Processing dairy cow dung into manure was the prioritized recommendation to reduce the impact.

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


Author(s):  
Michelle A. Pang ◽  
Carolyn C. Seepersad

The evaluation of design concepts is a time consuming and resource intensive process. Crowdsourcing evaluations has been examined in previous work as a means to reduce the need for expert raters, while achieving similar evaluation results. This paper examines the impact of empathically priming novice raters on their evaluation of alternative design concepts. The rating system is based on a pairwise comparison method that requires minimal training of novice raters. In a pilot study the pairwise method for crowdsourcing evaluations is compared with crowdsourced evaluations using non-pairwise rating scales and with the evaluations of expert raters. The primary study incorporates written and empathic priming strategies to determine their impact on novice raters’ evaluation of concepts. Raters are asked to consider several criteria, including novelty, feasibility, clarity (of the concept), usefulness, ease of use, and overall worthiness of further development. Results offer insight into the criteria that are most relevant to novice raters and whether empathic priming has a significant effect on those evaluations.


Author(s):  
Ioana-Miruna Tătaru ◽  
Elena Fleacă ◽  
Bogdan Fleacă

AbstractTo perform their business operations, telecommunication companies need to consume energy. This paper aims to analyze and compare the energy consumption and their greenhouse gas emissions for there of the biggest telecommunication companies: Vodafone, Orange and Telekom. Although the scientific literature proposed some analysis on the environmental measures that the telecommunication companies have to take, there is a shortage of researchers focused on GRI reporting data and the pairwise comparison method. The authors compared these telecommunication companies’ emissions under the following criteria: energy consumption (GRI 302-1), scope 1 (GRI 305-1), scope 2 (GRI 305-2) and scope 3 (GRI 305-3) greenhouse gas emissions, reduction of emissions (GRI 305-5), using the pairwise comparison method. To reduce their emissions, companies developed a sustainability strategy. This paper will further emphasize what are the plans to reduce emissions for the company which, following the analysis, pollutes the most. To provide an overview of the future of the company which, by the analysis, pollutes the most, the authors have identified and analyzed what are the main actions that the company should take to reduce their impact on the environment. To do so, the authors firstly analyze the causes of the pollution produced by the telecommunication company using Ishikawa diagram. Then, it identifies what are the main organizational processes that can be improved using APQC standardization, to show that the improvement can be made if the organization adjusts their organizational processes. This paper is an enhancement to the studies form the field because it provides a comparative analysis on three of the most competitive telecommunication companies in the world, uses GRI criteria and pairwise comparison method and gives an overview on the next steps for the telecommunication company to reduce their greenhouse gas emissions.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2013 ◽  
Vol 4 (2) ◽  
pp. 103-109 ◽  
Author(s):  
E. Klaversma ◽  
A. W. C. van der Helm ◽  
J. W. N. M. Kappelhof

Waternet, the water cycle company of Amsterdam and surrounding areas, uses the life cycle assessment (LCA) method to evaluate the environmental impact of investment decisions and to determine the potential reduction of direct and indirect greenhouse gas (GHG) emissions of different alternatives. This approach enables Waternet to fulfil its corporate objective to improve sustainability and to become climate neutral by 2020. Three example studies that give a good overview of the use of LCAs at Waternet and problems encountered are discussed: phosphate removal and recovery from wastewater, pH correction of drinking water with carbon dioxide (CO2) and materials for drinking water distribution pipes. The environmental impact assessments were performed in SimaPro 7 using the ReCiPe method and the Intergovernmental Panel on Climate Change Global Warming Potential (IPCC GWP) 100a method. The Ecoinvent 2.0 and 2.2 databases were used for the material and process data. From the examples described, it can be concluded that only the phosphate removal case had a significant effect on the climate footprint. The article discusses applications and limitations of the LCA technique. The most important limitation is that the impact of water consumption and the possible impact of effluent compounds to surface water are not considered within the used methods.


2018 ◽  
Vol 74 ◽  
pp. 11003
Author(s):  
Andreas Pramudianto

Basically each product or service has its own life cycle. Life Cycle Analysis Method can be used to assess the impact of an activity both production and service activities. Environmental Impact Assessment (EIA) or Analisis Mengenai Dampak Lingkungan (AMDAL) is one of the activities that must be fulfilled in order to obtain an environmental permit. EIA activities have a life cycle process that needs to be known and understood so that environmental permits can be obtained. Therefore this study aims to find out the use of the LCA method in EIA procedures. In addition, with the LCA method, EIA activities are expected to be well studied according to the function of this service. LCA can provide to reduce the least impact from environmental damage. This research will be useful for the development of environmental science, especially related to the study of environmental impacts, especially EIA. It is expected that the results of the study will provide a complete picture of the relevance of the LCA method with EIA and the benefits that can be taken. The results of this study will be an important recommendation for decision makers regarding the importance of EIA in development, especially sustainable development through the method used, namely LCA.


2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Jamile Damasceno Barbosa ◽  
Vitor Hugo de Paiva Santos ◽  
Priscilla Cavalcante de Araújo ◽  
Felipe Lucas de Medeiros ◽  
Letícia Yasmin da Silva Otaviano

PurposeThe paper aims to propose the development of an eco product to replace the traditional cotton swab that meets the expected needs, besides having a bias based on sustainability and economic viability.Design/methodology/approachThe applied nature article opted for an exploratory and descriptive study, with the objective of seeking a solution to a real problem: to reduce the environmental impact in the disposal of cotton swabs. To test this hypothesis, the exploratory stage evaluated the literature on the principles of eco design and environmental marketing to understand market viability and environmental impacts. The descriptive phase presented a comparative analysis between the original product and the proposed one, in terms of production processes and impacts of the product life cycle. Thus, an alternative product was conceived and validated applying the life cycle analysis (LCA).FindingsThe paper provides a comparative analysis between the eco product and the traditional product in order to validate the hypothesis that the new proposal reduces the environmental impact. It was found that both productive processes have similar impacts; however, the raw material of the proposed eco product demonstrated a significant reduction in the impact caused on the environment, considering cradle to cradle analysis.Originality/valueThis paper conceives an eco product as an alternative to traditional cotton swab, presenting an innovative potential in line with worldwide sustainability trends.


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


Sign in / Sign up

Export Citation Format

Share Document