scholarly journals PANEL DINDING GEOPOLIMER DENGAN PERKUATAN WIREMESH

Author(s):  
Andini Pratiwi Putri ◽  
Iman Satyarno ◽  
Ashar Saputra

ABSTRAK Pengembangan fly ash berbasis geopolimer sangat cocok untuk memperluas aplikasi pracetak khususnya panel dinding pada lingkungan asam sulfat. Panel berbahan abu terbang ini dapat dijadikan pertimbangan karena memiliki keunggulan diantaranya kekerasan tinggi, ramah lingkungan, tidak menghasilkan gas karbon (CO2), tahan pada temperatur panas antara 600-800° C, tahan lingkungan asam, dan tidak memerlukan perawatan panas. Untuk pembuatan struktur panel pracetak menggunakan bahan pengisi berupa mortar berbahan geopolimer dengan komposisi NaOH 14 M, rasio NaOH/Na2SiO3 sebesar 1 :2, rasio alkaline : fly ash sebesar 35%, dan menggunakan variasi wiremesh sebagai perkuatan, dengan ukuran benda uji panel 800x400x40 mm. Hasil yang didapat kuat tekan umur 1 hari sebesar 11.27 MPa umur 28 hari 60,84 MPa, dengan nilai modulus 28 hari sebesar 13808 MPa. Pengujian kuat tarik 1 hari sebesar 1.02 MPa dan 28 hari sebesar 2,95 MPa Pengujian kuat lentur didapatkan 3,52 MPa tanpa perkuatan dan 4,52 dengan perkuatan. Kata kunci: Geopolymer, panel, wiremesh  ABSTRACT Geopolymer-based fly ash development is perfect for expanding precast applications especially wall panels in sulfuric acid environments. Panels made of fly ash can be considered because it has the advantage of high hardness, environmentally friendly, does not produce carbon gas (CO2), resistant to heat temperature between 600-800 ° C, resistant to acidic environment, and not require hot maintenance.To create the structure of precast panels using mortar filling material with geopolymer with composition NaOH 14 M, ratio of NaOH/Na2SiO3 is 1:2, ratio alkaline ratio: fly ash 35%, and use wiremesh variation, size of panel 800x400x40 mm. Results obtained compressive strength of 1 day 11.27 MPa, age 28 Days 60.84 MPa, modulus elasticity 28-day 13808 MPa. Result tensile strength 1-day 1.02 MPa and 28 days 2.95 MPa, frexural strength panel 3.52 MPa without wiremesh and 4.52 with wiremesh. Keywords: Geopolymer, panels, wiremesh

Author(s):  
M.A.P Handana ◽  
◽  
Besman Surbakti ◽  
Rahmi Karolina ◽  
◽  
...  

The use of borax solution as a preservative in wood and bamboo materials is well known in the community. A borax solution is an environmentally friendly liquid that can dissolve in water, so it is suitable to be used as a preservative within cold or hot soaking techniques. The ability of borax to resist insects and fungus attacks on bamboo has been proven, but the effect of the solution on the strength of bamboo must also be investigated. This study conducts to investigate the effects of borax and its additives as preservative solutions to the mechanical properties of bamboos. The bamboos preservations were conducted by cold conditions of immersion, while the mechanical properties were performed to understand the effects of preservatives. The result of this study indicated that 30% to 50% borax in the preservative solution is sufficient to provide significant increase in strength for compressive strength, tensile strength, and bending strength of bamboo specimen. From this study, the use of borax solution in preserving the bamboos materials improved the quality of bamboos based on its mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.


Reactive powder concrete (RPC) is the ultra-high strength concrete made by cementitious materials like silica fumes, cement etc. The coarse aggregates are completely replaced by quartz sand. Steel fibers which are optional are added to enhance the ductility. Market survey has shown that micro-silica is not so easily available and relatively costly. Therefore an attempt is made to experimentally investigate the reduction of micro-silica content by replacing it with fly-ash and mechanical properties of modified RPC are investigated. Experimental investigations show that compressive strength decreases gradually with addition of the fly ash. With 10 per cent replacement of micro silica, the flexural and tensile strength showed 40 and 46 per cent increase in the respective strength, though the decrease in the compressive strength was observed to be about 20 per cent. For further percentage of replacement, there was substantial drop in compressive, flexural as well as tensile strength. The experimental results thereby indicates that utilisation of fly-ash as a partial replacement to micro silica up to 10 per cent in RPC is feasible and shows quite acceptable mechanical performance with the advantage of utilisation of fly-ash in replacement of micro-silica.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Tuan Anh Nguyen

Fly ash, a waste product from thermal power plants, is one of the good alternatives for use as a filler in polymers, especially in flame retardants. Fly ash is an environmentally friendly fire retardant additive for composites, used in place of conventional flame retardant additives such as halogenated organic compounds, thus promoting environmental safety. In this study, fly ash was modified with stearic acid to improve adhesion at the polymers interface and increase compatibility. Fly ash was studied at various volumes (5, 10, and 20 wt.% fly ash) used in this study to synthesize fly ash-epoxy composites. The results show that the tensile strength, flexural strength, compressive strength, and impact strength of these synthetic materials increase when fly ash is modified to the surface, compressive strength: 197.87 MPa, flexural strength: 75.20 MPa, impact resistance: 5.77 KJ/m2, and tensile strength: 47.89 MPa. Especially, the fire retardant properties are improved at a high level, with a modified 20% fly ash content: the burning rate of 16.78 mm/min, minimum oxygen index of 23.2%, and meet the fire protection standard according to UL 94HB with a burning rate of 8.09 mm/min. Scanning electron microscopy (SEM) and infrared spectroscopy were used to analyze the morphological structure of fly ash after being modified and chemically bonded with epoxy resin background.


2013 ◽  
Vol 357-360 ◽  
pp. 1062-1065 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This paper presents the results of an experimental study on the compressive strength, splitting tensile strength and modulus of elasticity characteristics of high performance concrete. These tests were carried out to evaluate the mechanical properties of HPC for up to 7 and 28 days. Mixtures were prepared with water to binder ratio of 0.40. Two mixtures were containing fly ash at 25%, silica fume at 5% cement replacement, respectively. Another mixture was contains blast furnace slag and fly ash at 25%. Three standard 100¥a200 cylinder specimens were prepared. HPC showed improvement in the compressive strength and splitting tensile strength when ordinary Portland cement was replaced with silica fume. Compare with specimens FA25 and BS25FA25, specimen SF5 showed much more modulus of elasticity. It shows that the use of the blast furnace slag of 25% and fly ash of 25% cement replacement has caused a small increase in compressive strength and splitting tensile strength and modulus of elasticity compared to the only use of fly ash of 25% at 28days. The results indicated that the use of blast furnace slag or silica fume provided the good performance compare to fly ash when the mechanical properties of the high performance concretes were taken into account.


2010 ◽  
Vol 113-116 ◽  
pp. 1013-1016 ◽  
Author(s):  
Zhi Min He ◽  
You Jun Xie ◽  
Guang Cheng Long ◽  
Jun Zhe Liu

In precast concrete elements manufacturing, steam-cured concrete incorporating 30% fly ash encountered the problem of a too low demoulding compressive strength. To resolve it, this paper developed a new steam-cured concrete (AFSC) incorporating fly ash and a chemical activator. Experiments were conducted to investigate the mechanical properties of AFSC. The corresponding mechanism was also discussed by testing the microstructure of concrete. Results indicate that the demoulding compressive strength of AFSC can meet production requirements, and compressive and flexure strength of AFSC at later ages increase well. Compared with that of ordinary steam-cured concrete, AFSC has a higher tensile strength, and the capability of AFSC to resist cracks is enhanced remarkably. At an early age, addition of the chemical activator can distinctly accelerate the extent of hydration of the fly ash cement systems, and thus the microstructure of concrete becomes denser.


2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


2011 ◽  
Vol 261-263 ◽  
pp. 8-12
Author(s):  
Shu Shan Li ◽  
Ming Xiao Jia ◽  
Dan Ying Gao

The basic mechanical properties of fly ash fiber concrete were tested. The influences to the compressive strength, splitting tensile strength and compressive modulus of elasticity of fiber concrete by water-cement ratio, dosage of fly ash and other factors were analyzed. The influence mechanism of fly ash to concrete is discussed. The results indicate that with the increase of the dosage of fly ash, the early strength of double-doped concrete is reduced, while the later strength of concrete was obviously increased.


Sign in / Sign up

Export Citation Format

Share Document