scholarly journals Влияние концентрации водорода на фототок диодов Шоттки Pd/n-InP

Author(s):  
Е.А. Гребенщикова ◽  
В.Г. Сидоров ◽  
В.А. Шутаев ◽  
Ю.П. Яковлев

AbstractThe variation rate of the short-circuit photocurrent of Pd/ n -InP Schottky diodes is studied as a function of the presence of hydrogen in a gas mixture with H_2 concentrations of 1–100 vol %. It is shown that upon the simultaneous exposure of the Schottky diode to a hydrogen-containing gas mixture and to light (λ = 0.9 μm), the hydrogen concentration in the gas mixture and the Pd/ n -InP diode photocurrent variation rate are related exponentially. The Schottky-diode response rate to the presence of hydrogen in the gas mixture increases with the illumination intensity.

2020 ◽  
Vol 854 ◽  
pp. 87-93 ◽  
Author(s):  
Khafiz M. Salikhov ◽  
Nikolay D. Stoyanov ◽  
Tatyana V. Stoyanova

It was found that at room temperature the value of the photoinduced current of Schottky diodes based on heterostructures InP/GaInAs/Pd at a hydrogen concentration of 0.03% is reduced by two orders of magnitude compared to the value without hydrogen. The value of the photoinduced current depends on the thickness of the depleted region on the surface of the semiconductor. A small change in the charged layer of H+ can cause a significant change in the thickness of this region and as a result, a strong change in the photoinduced current. This effect on current is much stronger than the influence of hydrogen concentration or capacitance without optical activation. As a result, it becomes possible to create hydrogen and hydrogen-containing gas sensors with much better sensitivity at room temperature. The original design of a miniature H2 sensor including an IR LED, a Schottky diode with a Pd contact, a Peltier cooler and a thermosensor is demonstrated.


Author(s):  
Е.А. Гребенщикова ◽  
Х.М. Салихов ◽  
В.Г. Сидоров ◽  
В.А. Шутаев ◽  
Ю.П. Яковлев

AbstractThe photovoltage of a metal–insulator–semiconductor structure (Pd–anodic oxide–InP) is studied in relation to the hydrogen concentration in the range 0 . 1–100 vol % in a nitrogen–hydrogen gas mixture. It is shown that, under simultaneous exposure of the structure to light and hydrogen, the photovoltage decay rate and the hydrogen concentration are exponentially related to each other: N _H = a exp( bS ). Here, N _H is the hydrogen concentration (vol %) in the nitrogen–hydrogen mixture. S = dU / dt |_ t  _= 0 is the rate at which the signal U changes in the initial portion of the photovoltage decay, beginning from the instant at which the structure is brought into contact with the gas mixture. a and b are constants dependent on the thicknesses of the palladium layer and anodic oxide film on InP.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


2001 ◽  
Vol 708 ◽  
Author(s):  
Keizo Kato ◽  
Futoshi Takahashi ◽  
Kazunari Shinbo ◽  
Futao Kaneko ◽  
Takashi Wakamatsu

ABSTRACTShort-circuit photocurrents (ISC) due to surface plasmon (SP) excitations have been investigated for the photoelectric cells using Langmuir-Blodgett (LB) films of merocyanine (MC) dye. The MC dye exhibits p-type conduction, and the Schottky and Ohmic contacts are obtained at the interfaces between MC LB films and Al thin films and between MC LB films and Ag thin films, respectively. Since the Schottky diodes show the photoelectric effects, the Schottky photoelectric cells have been constructed. The cells with two kinds of structures, that is, prism/Al/MC/Ag (type I) and prism/MgF2/Al/MC/Ag (type II), have been prepared. In the attenuated total reflection (ATR) method, the types I and II have the Kretschmann and both the Kretschmann and Otto configurations, respectively. SP has been resonantly excited at the interface between Ag and air for the type I and at the interfaces between MgF2 and Al between Ag and air for the type II. The ATR and the ISC properties have been simultaneously measured as a function of the incident angles of the laser beams. The peaks of the ISC have corresponded to the resonant angles of the ATR curves. The electric fields and optical absorptions in the cells have been also calculated using the dielectric constants and the film thicknesses obtained from the ATR measurements. The calculated absorptions in the MC layers as a function of the incident angles have corresponded to the results of ISC. It has been estimated that the ISC for both types I and II could be enhanced by the excitations of SP in the ATR configurations.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000058-000060
Author(s):  
Tomas Hjort ◽  
Adolf Schöner ◽  
Andy Zhang ◽  
Mietek Bakowski ◽  
Jang-Kwon Lim ◽  
...  

Electrical characteristics of 4H-SiC Schottky barrier diodes, based on buried grid design are presented. The diodes, rated to 1200V/10A and assembled into high temperature capable TO254 packages, have been tested and studied up to 250°C. Compared to conventional SiC Schottky diodes, Ascatron's buried grid SiC Schottky diode demonstrates several orders of magnitude reduced leakage current at high temperature operation.


2019 ◽  
Vol 53 (2) ◽  
pp. 234-236 ◽  
Author(s):  
E. A. Grebenshchikova ◽  
V. G. Sidorov ◽  
V. A. Shutaev ◽  
Yu. P. Yakovlev

2014 ◽  
Vol 13 (01) ◽  
pp. 1450003 ◽  
Author(s):  
ALEXEY V. KLYUEV ◽  
EVGENY I. SHMELEV ◽  
ARKADY V. YAKIMOV

A model of Schottky diode with δ-doping is suggested. The aim is the determination of technological areas of the diode, which are responsible for the 1/f noise. Series resistance of base and contacts, and the possible leakage are taken into account. Equivalent parameters of the diode are defined from the analysis of the current–voltage characteristic. The model of fluctuations in the charge of non-compensated donors in δ-layer of Schottky junction (ΔNs – model) and model of 1/f noise in leakage current are suggested for an explanation of experimental data. Our study show that, in the investigated diodes, in a million atomic impurities, there are about 1–10 special impurity atoms with stochastically modulated ionization energy.


2006 ◽  
Vol 915 ◽  
Author(s):  
Tayyar Dzhafarov ◽  
Cigdem Oruc Lus ◽  
Sureyya AYDIN ◽  
Emel Cingi

AbstractIn this work we present data on investigation of the current-voltage and capacitance characteristics of Au/PS Schottky type structures in the presence of different hydrogen-containing solutions (glucose, ethanol, methanol, boric acid, sodium tetraborate pentahydrate, sodium borohydride, benzine, KOH). Generation of the open-circuit voltage and short-circuit current density and capacitance up to 0.55 V, 25 mA/cm2 and 1μF respectively on placing of Au/PS structures in these solutions was discovered. This effect is mainly caused by hydrogen component of solutions. The possible mechanism generation of voltage and capacitance in metal/PS sensors hydrogen-containing solutions is suggested. The advantage of metal/PS Schottky type sensors consists in working without applying external electricity.


2015 ◽  
Vol 1771 ◽  
pp. 201-206 ◽  
Author(s):  
M. Weingarten ◽  
T. Zweipfennig ◽  
A. Vescan ◽  
H. Kalisch

ABSTRACTHybrid organic/silicon heterostructures have become of great interest for photovoltaic application due to their promising features (e.g. easy fabrication in a low-temperature process) for cost-effective photovoltaics. This work is focused on solar cells with a hybrid heterojunction between the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-doped monocrystalline silicon. As semi-transparent top contact, a thin (15 nm) Au layer was employed. Devices with different P3HT thicknesses were processed by spin-casting and compared with a reference Au/n-Si Schottky diode solar cell.The current density-voltage (J-V) measurements of the hybrid devices show a significant increase in open-circuit voltage (VOC) from 0.29 V up to 0.50 V for the best performing hybrid devices compared to the Schottky diode reference, while the short-circuit current density (JSC) does not change significantly. The increased VOC indicates that P3HT effectively reduces the reverse electron current into the gold contact. The wavelength-dependent JSC measurements show a decreased JSC in the wavelength range of P3HT absorption. This is related to the reduced JSC generation in silicon not being compensated by JSC generation in P3HT. It is concluded that the charge generation in P3HT is less efficient than in silicon.After a thermal annealing of the hybrid P3HT/silicon solar cells, we achieved power conversion efficiencies (PCE) (AM1.5 illumination) up to 6.5% with VOC of 0.52 V, JSC of 18.6 mA/cm² and a fill factor (FF) of 67%. This is more than twice the efficiency of the reference Schottky diode.


Sign in / Sign up

Export Citation Format

Share Document