scholarly journals Кинетические свойства твердых растворов Mn-=SUB=-1-x-=/SUB=-Gd-=SUB=-x-=/SUB=-Se

2018 ◽  
Vol 60 (9) ◽  
pp. 1650
Author(s):  
О.Б. Романова ◽  
С.С. Аплеснин ◽  
А.М. Харьков ◽  
В.В. Кретинин ◽  
А.М. Живулько

AbstractThe results of kinetic study of the Mn_1 – x Gd_ x Se chalcogenide solid solutions with different substitute concentrations (0 ≤ x ≤ 0.15) in the temperature range of 80–400 K are reported. The difference between the Hall constant and thermopower signs has been found. The electron-type conductivity determined from the Hall constant and hysteresis of the I – V characteristics have been explained by the existence of nanoareas with local electric polarizations. The sharp extrema observed in the temperature dependence of thermopower are explained by splitting of a narrow 4 f subband by the crystal field.

2019 ◽  
Vol 85 (5) ◽  
pp. 60-68
Author(s):  
Yuliay Pogorenko ◽  
Anatoliy Omel’chuk ◽  
Roman Pshenichny ◽  
Anton Nagornyi

In the system RbF–PbF2–SnF2 are formed solid solutions of the heterovalent substitution RbxPb0,86‑xSn1,14F4-x (0 < x ≤ 0,2) with structure of β–PbSnF4. At x > 0,2 on the X-ray diffractograms, in addition to the basic structure, additional peaks are recorded that do not correspond to the reflexes of the individual fluorides and can indicate the formation of a mixture of solid solutions of different composition. For single-phase solid solutions, the calculated parameters of the crystal lattice are satisfactorily described by the Vegard rule. The introduction of ions of Rb+ into the initial structure leads to an increase in the parameter a of the elementary cell from 5.967 for x = 0 to 5.970 for x = 0.20. The replacement of a part of leads ions to rubium ions an increase in electrical conductivity compared with β–PbSnF4 and Pb0.86Sn1.14F4. Insignificant substitution (up to 3.0 mol%) of ions Pb2+ at Rb+ at T<500 K per order of magnitude reduces the conductivity of the samples obtained, while the nature of its temperature dependence is similar to the temperature dependence of the conductivity of the sample β-PbSnF4. By replacing 5 mol. % of ions with Pb2+ on Rb+, the fluoride ion conductivity at T> 450 K is higher than the conductivity of the initial sample Pb0,86Sn1,14F4 and at temperatures below 450 K by an order of magnitude smaller. With further increase in the content of RbF the electrical conductivity of the samples increases throughout the temperature range, reaching the maximum values at x≥0.15 (σ573 = 0.34–0.41 S/cm, Ea = 0.16 eV and σ373 = (5.34–8.16)•10-2 S/cm, Ea = 0.48–0.51 eV, respectively). In the general case, the replacement of a part of the ions of Pb2+ with Rb+ to an increase in the electrical conductivity of the samples throughout the temperature range. The activation energy of conductivity with an increase in the content of RbF in the low-temperature region in the general case increases, and at temperatures above 400 K is inversely proportional decreasing. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the samples obtained increases with an increase in the vacancies of fluoride ions in the structure of the solid solutions.


2011 ◽  
Vol 170 ◽  
pp. 5-8 ◽  
Author(s):  
Tadeusz Groń ◽  
E. Filipek ◽  
Henryk Duda ◽  
S. Mazur ◽  
K. Bärner

Electrical resistivity dips in the temperature range 269-287 K and n-type conductivity below 415 K for solid solutions of MoO3 in SbVO5 with general formula SbxVyMozOt are observed. The electrical resistivity anomalies are interpreted as due to conduction of small-polarons, generated here as electrons together with distortions of their associated defective oxygen lattice and/or alternatively based on the crossover of electronic or polaronic states.


2021 ◽  
pp. 44-48
Author(s):  
S.I. Bananyarli ◽  

The termophisical properties, namely, the temperature dependence of thermal conductivity, thermal resistance and heat capacity of the allays compositions (2Bi2O3∙B2O3)100-x (2Bi2O3∙3GeO2)x in the (300–600) K temperature range have ligated been invest. An increase in thermal conductivity χ(T) above 500 K is probably associated with the softening of alloys and the presence of blurred phase transitions, which are accompanied by partial breaking of chemical bonds. It was revealed that the heat capacity in alloys of the compositions (2Bi2O3∙B2O3)100-x (2Bi2O3∙3GeO2)x increases with an increase in the GeO2 concentration. In the studied samples, that showed their own disorder during solidification, the thermal conductivity is strongly reduced due to the enhancement of the anharmonicity of phonon – phonon interactions. İn turn a small "disorder" introduced by defects due to the difference in masses is not noticeable against the background of the huge "disorder" inherent in oxide substances


1999 ◽  
Vol 572 ◽  
Author(s):  
Joachim Krüiger ◽  
Noad Shapiro ◽  
Sudhir Subramanya ◽  
Yihwan Kim ◽  
Henrik Siegle ◽  
...  

ABSTRACTThis paper analyses the influence of the sapphire substrate on stress in GaN epilayers in the temperature range between 4K and 600K. Removal of the substrate by a laser assisted liftoff technique allows, for the first time, to distinguish between stress and other material specific temperature dependencies. In contrast to the prevailing assumption in the literature, that the difference in the thermal expansion coefficients is the main cause for stress it is found that the substrate has a rather small influence in the examined temperature range. The measured temperature dependence of stress is in contradiction to the published values for the thermal expansion coefficients for sapphire and GaN.


Author(s):  
Peter P. Knox ◽  
Vladimir V. Gorokhov ◽  
Boris N. Korvatovsky ◽  
Nadezhda P. Grishanova ◽  
Sergey N. Goryachev ◽  
...  

1978 ◽  
Vol 31 (4) ◽  
pp. 791 ◽  
Author(s):  
R Chandramani ◽  
SP Basavaraju ◽  
N Devaraj

Chlorine n.q.r, in 2,6-dichlorophenol has been investigated at temperatures from 77 K to room temperature. Two resonance lines due to chemically inequivalent sites have been observed throughout this temperature range. Torsional frequencies of the molecule have been calculated at temperatures from 77 to 300 K according to Bayer's theory and Brown's method. Also the temperature coefficients of the torsional frequencies have been calculated.


1996 ◽  
Vol 442 ◽  
Author(s):  
Harald Overhof

AbstractThe electronic properties of 3d transition metal (TM) defects located on one of the four different tetrahedral positions in 3C SiC are shown to be quite site-dependent. We explain the differences for the 3d TMs on the two substitutional sites within the vacancy model: the difference of the electronic structure between the carbon vacancy VC and the silicon vacancy VSi is responsible for the differences of the 3d TMs. The electronic properties of 3d TMs on the two tetrahedral interstitial sites differ even more: the TMs surrounded tetrahedrally by four Si atoms experience a large crystal field splitting while the tetrahedral C environment does not give rise to a significant crystal field splitting at all. It is only in the latter case that high-spin configurations are predicted.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3758-3763 ◽  
Author(s):  
AUGUST YURGENS ◽  
DAG WINKLER ◽  
TORD CLAESON ◽  
SEONG-JU HWANG ◽  
JIN-HO CHOY

The c-axis tunneling properties of both pristine Bi2212 and its HgBr 2 intercalate have been measured in the temperature range 4.2-250 K. Lithographically patterned 7-10 unit-cell heigh mesa structures on the surfaces of these single crystals were investigated. Clear SIS-like tunneling curves for current applied in the c-axis direction have been observed. The dynamic conductance d I/ d V(V) shows both sharp peaks corresponding to a superconducting gap edge and a dip feature beyond the gap, followed by a wide maximum, which persists up to a room temperature. Shape of the temperature dependence of the c-axis resistance does not change after the intercalation suggesting that a coupling between CuO 2-bilayers has little effect on the pseudogap.


2011 ◽  
Vol 483 ◽  
pp. 174-179 ◽  
Author(s):  
Ting Liang ◽  
Jian Jun Tang ◽  
Qian Qian Zhang ◽  
Yong Wang ◽  
Jing Li ◽  
...  

In this paper, We use a novel principle to detect acceleration and report how I-V characteristics and piezoresistance coefficient of AlGaN/GaN HEFT-micro-accelerometer are affected by setting different temperatures. It is shown that saturation current of device would go down if the temperature goes up, which is about 0.028mA/°C, based on the research. However, the device can work well at the temperature range of -50°C to 50°C, which indicates that it can work safely in the larger temperature range.


Sign in / Sign up

Export Citation Format

Share Document