scholarly journals Resource-Saving Rice Cultivation with Circulated Irrigation of Treated Wastewater

2012 ◽  
Vol 68 (7) ◽  
pp. III_93-III_101
Author(s):  
Ayumi MURAMATSU ◽  
Toru WATANABE ◽  
Atsushi SASAKI ◽  
Hiroaki ITO ◽  
Akihiko KAJIHARA
2021 ◽  
Vol 37 ◽  
pp. 00151
Author(s):  
Igor Prikhodko ◽  
Stanislav Vladimirov ◽  
Daniil Alexandrov

The world practice of rice cultivation has shown that rice cultivation by traditional methods for Russia is labor-intensive, resource-intensive, ineffective with low profitability, and often unprofitable production. As a result, traditional methods of flooding rice paddies in Russia are faced with a shortage and high cost of irrigation water and a reduction in rice irrigation systems, i.e., areas suitable for rice cultivation. For solving the problem of unprofitable rice production, an analysis of the world practice of rice production has been implemented. The analysis showed that the most optimal solution for the natural and climatic conditions of the Krasnodar Territory is the cultivation of rice using sprinkler irrigation and drip irrigation. Further analysis showed that drip irrigation is the most promising way of growing rice, which has many undeniable advantages. The main advantages of drip irrigation are the low irrigation rate, labor intensity, and energy intensity of rice production. Therefore, the article proposes a pioneering Russian ridge cultivation method for rice cultivation on the lands of the irrigated rice fund with drip irrigation under plastic and/or biodegradable perforated film. This method will make it possible to radically revise the principles of rice cultivation, form a new generation of rice crop rotations with the inclusion of melons and vegetables in them, and carry out rice production on previously rainfed lands. The implementation of the method has proven the effectiveness and feasibility of our research.


2021 ◽  
Vol 37 ◽  
pp. 00029
Author(s):  
Igor Prikhodko ◽  
Stanislav Vladimirov ◽  
Daniil Alexandrov

According to the studies carried out by the US Geological Survey (USGS) under the project GFSAD30, Russia ranks fourth in the world in the number of fertile lands. However, today there are some problems that “slow down” the development of the Russia’s agricultural sector, including the rice-planting complex. One of the main problems of the Russian agro-industrial complex is unsustainable environmental management, which leads to inefficiency and sometimes loss of agricultural production. This is caused by the “rigidity” of the legal framework, the reluctance or inability of the economy to switch to new resourcesaving technologies, as well as the fear of partially or completely losing the crop when switching to new technologies. For the “soft” transition of the economy to new resource-saving technologies, we propose a resource-saving technology for cultivating rice on underground drip irrigation under mulch film on rice irrigation systems, the introduction of which proved its effectiveness, as well as the relevance of our study. The efficiency of proposed resource-saving technology of rice cultivation on drip irrigation is expressed in the increase of profitability of rice production by 26%, reduction of irrigation norm by more than 5 times, labor intensity of rice production by 42% and material costs by 24%. The proposed technology not only reduced the anthropogenic load, but also improved the land reclamation condition, including the situation in the rice irrigation ecosystem. Further development of drip technologies in the rice sector of Russia will allow developing fundamentally new, ecological-reclamative, balanced rice crop rotation with the inclusion of vegetable and cucurbits crops. The proposed technology will provide an opportunity to cultivate rice outside rice irrigation systems on previously rich lands, which will give agro-industrial workers new opportunities and prospects in rice production.


2021 ◽  
Vol 37 ◽  
pp. 00152
Author(s):  
Igor Prikhodko

According to long-term studies of the influence of rice cultivation show that meadow-black soil, meadow, alluvial, meadow-swamp (heavy black soils) soils of the reclamation and water management complex of the Lower Kuban, with the beginning of their use for rice cultivation, lose their favorable physical properties and become degraded, merged, viscous and gleyed formations, which leads to a decrease in the yield and quality of the resulting grain, loss of soil fertility, as a rule, with the subsequent withdrawal of lands from the irrigation fund. In order to prevent these negative consequences, it is necessary to use the accumulated world experience of rice cultivation in a timely manner. For a number of reasons, many scientific achievements in the field of selective breeding and rice production technologies remain unpopular. Today, the level of information technology allows studying the advanced experience of rice cultivation in a short time. The world leader in rice production is the PRC, where for more than 10 years they have been practicing the cultivation of rice using drip watering under mulching film, considering this method to be one of the most effective and resource-saving. However, the rice-growing regions of the PRC are located in subtropical and tropical climates with the sum of active temperatures and solar activity during the growing season significantly exceeding the average values of these values for the rice-growing regions of the reclamation and water management complex of the Lower Kuban. Consequently, to implement this technology on the rice irrigation systems of the Krasnodar Territory, it is necessary to adapt them to the natural and climatic conditions of the region. Therefore, the paper proposes the technology of underground drip watering of rice, the introduction of which has proven its effectiveness and feasibility.


2021 ◽  
Vol 37 ◽  
pp. 00031
Author(s):  
Igor Prihodko

Rice cultivation is the most resource-intensive production in the Russian agro-industrial sector. Historically, the technology of flooded rice cultivation in thу Krasnodar Territory has remained virtually unchanged for more than 90 years. This is due not only to the biological but also to the technological features of its cultivation. In this connection, the issue of optimizing the production process of rice cultivation is becoming increasingly important every year. Global experience in rice cultivation has determined a further direction of research on optimizing rice cultivation technologies, namely the development of a resource-saving technology for drip irrigation of rice. The pioneering research done by domestic scientists to test drip irrigation of rice in Russia has proved the feasibility and effectiveness of their use. This article proposes a modern resource-saving drip irrigation project for rice, which was tested in OOO “Chernoerkovskoe” in the Slavyanskiy District of the Krasnodar Territory. The authors have proved the efficiency of the proposed rice cultivation technology, resulting in the reduction of irrigation norm, material, labour, energy and technical-technological resources in rice production and crops of rice rotation. The introduction of the new technology has improved not only the biometric indicators of rice, but also the ameliorative condition of soils. Drip irrigation technology makes it possible to cultivate rice outside the rice irrigation systems on land previously used for rain-fed agriculture, which will increase not only the potential area under rice cultivation, but also the geography of rice cultivation in Russia.


2016 ◽  
Vol 75 (4) ◽  
pp. 898-907 ◽  
Author(s):  
Toru Watanabe ◽  
Takuma Mashiko ◽  
Rizki Maftukhah ◽  
Nobuo Kaku ◽  
Dong Duy Pham ◽  
...  

This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1516 ◽  
Author(s):  
Dong Duy Pham ◽  
Kei Cai ◽  
Luc Duc Phung ◽  
Nobuo Kaku ◽  
Atsushi Sasaki ◽  
...  

To obtain a high rice yield and quality for animal feed without synthetic fertilizers, an experiment with bench-scale apparatus was conducted by applying continuous irrigation with treated municipal wastewater (TWW). Uniform rice seedlings of a high-yield variety (Oryza sativa L., cv. Bekoaoba) were transplanted in five treatments to examine different TWW irrigation directions (“bottom-to-top” and “top-to-top” irrigation) and fertilization practices (with and without P-synthetic fertilizers) as well as one control that simulated the irrigation and fertilization management of normal paddy fields. The highest rice yield (14.1 t ha−1), shoot dry mass (12.9 t ha−1), and protein content in brown rice (14.6%) were achieved using bottom-to-top irrigation, although synthetic fertilizers were not applied. In addition, this subsurface irrigation system could contribute to environmental protection by removing 85–90% of nitrogen from TWW more effectively than the top-to-top irrigation, which showed a removal efficiency of approximately 63%. No accumulation of heavy metals (Fe, Mn, Cu, Zn, Cd, Ni, Pb, Cr, and As) in the paddy soils was observed after TWW irrigation for five months, and the contents of these metals in the harvested brown rice were lower than the permissible limits recommended by international standards. A microbial fuel cell system (MFC) was installed in the cultivation system using graphite-felt electrodes to test the capacity of electricity generation; however, the electricity output was much lower than that reported in normal paddy fields. Bottom-to-top irrigation with TWW can be considered a potential practice to meet both water and nutrient demand for rice cultivation in order to achieve a very high yield and nutritional quality of cultivated rice without necessitating the application of synthetic fertilizers.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


2003 ◽  
pp. 108-116
Author(s):  
A. Bykov

According to the legal norms of the Russian Federation in the ownership, usage and disposal of natural resources the author analyses interaction between natural resources users and local authorities. The interaction is based upon ecological and economic factors, which cause the peculiarities of requirements put before natural resource users in the Far North. The strategic directions of resource saving economic development of these regions are considered.


Sign in / Sign up

Export Citation Format

Share Document