scholarly journals Pengaruh Pretreatment Secara Alkalisasi-Resistive Heating terhadap Kandungan Lignoselulosa Jerami Padi

2017 ◽  
Vol 37 (2) ◽  
pp. 132
Author(s):  
Dewi Maya Maharani ◽  
Lisa Normalasari ◽  
Dianita Kumalasari ◽  
Chandra Ardin Hersandi Prakoso ◽  
Mutiara Kusumaningtyas ◽  
...  

Cellulose is a potential biomass that is used for bioethanol production and commonly present in agricultural residues like rice straw. Cellulose is an important material to produce glucose and bioethanol, but it is covered by lignin and hemicellulose bonds to form a lignocellulose.  Bioethanol production using basic material containing cellulose requires special attention in the process of pretreatment for lignin degradation process and increase the accessible surface and decrystallize cellulose. The aim of this research was to apply alkalization and resistive heating combine method for rice straw pretreatment process before further being converted into bioethanol and to determine the effects of heating temperature and NaOH concentration on the content of  lignin, cellulose, and hemicellulose. The reactor had been designed for resistive heating process. Rice straw that was resized into 100 mesh has dissolved with 0.03 M, 0.05 M, and 0.07 M NaOH and heated with resistive heating temperature of 75 oC, 85 oC, and 99 oC. Cellulose is a raw material that will be further converted into glucose. So that, the selected optimum conditions of this study were  pretreatment with the highest increase of cellulose content level until 8.88% and resulted decreasing levels of lignin (1.39%) and hemicellulose (4.33%) by temperature  75 oC and 0.07 M NaOH concentration. Resistive heating that combine with alkalization can be used for rice straw pretreatment process that reduce lignin and hemicellulose content as well as increasing cellulose content. ABSTRAKSelulosa merupakan biomassa yang potensial digunakan untuk produksi bioetanol dan banyak ditemukan di residu pertanian seperti jerami padi. Selulosa merupakan material penting yang dapat dikonversi menjadi glukosa kemudian dikonversi menjadi bioetanol, namun selulosa pada alam dilapisi oleh ikatan lignin dan hemiselulosa menjadi lignoselulosa. Pembuatan bioetanol berbasis selulosa membutuhkan proses pretreatment yang berfungsi untuk mendegradasi ikatan lignin, meningkatkan luas permukaan biomassa dan dekristalisasi selulosa. Tujuan dari penelitian ini adalah mengetahui pengaruh alkalisasi resistive heating pada proses pretreatment jerami padi sebelum dikonversi lebih lanjut menjadi bioetanol dan mengetahui pengaruh suhu pemanasan serta konsentrasi NaOH selama pretreatment terhadap perubahan kandungan lignin, selulosa dan hemiselulosa. Sebelum dilakukan penelitian dilakukan perancangan reaktor resistive heating. Jerami padi ukuran 100 mesh dilarutkan pada larutan NaOH dengan variasi konsentrasi 0,03 M, 0,05 M, dan 0,07 M, selanjutnya dipanaskan pada reaktor resistive heating dengan variasi suhu pemanasan 75 oC, 85 oC, dan 99 oC. Selulosa merupakan senyawa yang akan dikonversi lebih lanjut menjadi glukosa. Sehingga pada penelitian ini dipilih kondisi optimum berdasarkan peningkatan selulosa tertinggi hingga 8,88% serta penurunan lignin dan hemiselulosa sebesar 1,39% dan 4,33% pada perlakuan suhu pemanasan 75 oC dan konsentrasi NaOH 0,07 M. Alkalisasi resistive heating dapat diterapkan pada pretreatment jerami padi karena dapat mengurangi kandungan lignin dan hemiselulosa serta meningkatkan kandungan selulosa.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Forough Nazarpour ◽  
Dzulkefly Kuang Abdullah ◽  
Norhafizah Abdullah ◽  
Nazila Motedayen ◽  
Reza Zamiri

Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungusCeriporiopsis subvermisporato increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%). The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated byC. subvermisporacan be used as an alternative material for the enzymatic hydrolysis and bioethanol production.


2020 ◽  
Vol 4 (2) ◽  
pp. 19
Author(s):  
Netty - Herawati

Elephant gass is cattle feed that contains good nutrition. One of its uses is converted into an energy source in the form bioethanol, Elephant grass has a high cellulose content reaching 40,85%, therefore elephant grass has the potential to be used as raw material in manufacture of bioethanol through the process of acid hydrolysis and fermentation. In research on percent yield of bioethanol from elephant grass chemically carried out at fixed conditions : grass weight 100 gr, temperature 100oC, water 1 liter, H2SO4 30 ml, hydrolysis timw 2 hours and conditions change : fermentation time 4,6,8 (day), saccharomyces cerevisiae starter 7%, 9%, 11%, 13%, HCl and H2SO4 catalys. From the research on chemical bioethanol production from elephant grass we got the best percent yield at 6 days of fermentation, 11% saccharomyces cerevisiae, HCl catalys which was 17,30%Keywords: bioethanol, fermentation, elephant grass,


Author(s):  
Masrullita Masrullita ◽  
Rizka Nurlaila ◽  
Zulmiardi Zulmiardi ◽  
Ferri Safriwardy ◽  
Auliani Auliani ◽  
...  

Rice straw is one of material containing cellulose to produce Carboxymethyl Cellulose (CMC). CMC is a non toxic polysaccharide that produces from cellulose that widely used in the pharmaceutical, food, textile, detergent, and cosmetic products industries. There are two stages usually use to produce CMC which are mercerization and esterification processes. Rice straw waste is one of the materials to produce CMC, it has a cellulose content of 37.7%, hemi-cellulose 21.99%, and lignin 16.62 %.  BPS Aceh shown that the total rice harvested area was 310.01 hectares, with a total production of 1.71 million tons, and rice produced at 982.57 thousand ton. This study aims to reduce waste and environmental pollution caused by rice straw and collects information of rice straw as a basic material to produce of carboxymethyl cellulose and to increase the economic value of rice straw.  The effects of various wieght parameters sodium monochloroacetate on chemical properties of CMC that produce from rice straw were investigated in this research. Rice straw was collected from a rice field in Nisam, North Aceh. The research conducted by synthesizing 5 grams rice straw for 5.5 hours using NaOH and Sodium Monochloroacetate solutions. With variations weight of sodium monochloroacetate are 5,6,7,8 and 9 grams. The characterization of CMC was carried out by Fourier Transform Infrared (FTIR), CMC yield, DS, Viscosity, water content, pH. The result shows that addition of sodium monochloroacetate was significant factors influence the chemical properties on CMC. The CMC that produced in this study achieved to National Indonesia Standard (SNI).


2017 ◽  
Vol 9 (6) ◽  
pp. 22
Author(s):  
Chiharu Hongo ◽  
Eisaku Tamura ◽  
I. G. A. A. Ambarawati ◽  
I. Made Anom Wijaya ◽  
A. A. A. Mirah Adi

Purpose of this study is to estimate rice yield on a plot basis with use of satellite data and field investigation data and to calculate potential quantity of rice straw to be utilized as a raw material for biofuel production in Bali, Indonesia. In addition, for continuous supply of rice straw by farmers to a biofuel producer, it is absolutely necessary to investigate farmer’s interest, behavior and potential issues to solve. For this investigation, an interview was made to the subak heads. The subak is a traditional social organization consisting of farmers for managing irrigation and agriculture in the farmers’ village.The created estimation equation of rice yield had NDVI from SPOT satellite data as a predictor and was significant at 1% level. Based on the rice yield estimated through the equation and the paddy area, quantity of rice straw to be available and quantity of bioethanol to be produced were estimated. In case of Kediri, the rice straw quantity was 42,274 t/year and the ethanol quantity was 12,682 kl.On the other hand, the handling of rice straw after harvesting was leaving/putting back to soil or burning, which accounted for 76% of the rice straw. Concerning a price of rice straw, about 60% of farmers expressed their willingness to sell at 100 rupiah (1 cent US$) per kg, and about 88% including people saying high probability seemed to think this price would be as an adequate level of sales price. Through the interview work, it becomes clear that, when some issues such as price of rice straw are settled, farmers are positive to selling of rice straw for production of biofuel.For realizing bioethanol production from rice straw, there still remain some items to be studied further such as production process, transportation and storage system and costs. The result of our study suggests that a proposal for improvement of stable production can be made through rice yield estimation and monitoring using satellite data and that rice straw can be supplied as a promising resource of raw material for bioethanol production. This is considered to contribute the promotion of activity to reach the national goal of bioethanol production in future.


2016 ◽  
Vol 27 (5) ◽  
pp. 598-605
Author(s):  
S. Sivarathnakumar ◽  
G. Baskar ◽  
R. Praveen Kumar ◽  
B. Bharathiraja

Purpose –Prosopis juliflora is a raw material for long-term sustainable production of bioethanol. The purpose of this paper is to identify the best combination of pre-treatment strategy implemented on the lignocellulosic biomass Prosopis juliflora for bioethanol production. Design/methodology/approach – Pre-treatment of lignocellulosic material was carried out using acid, alkali and sonication in order to characterize the biomass for bioethanol production. Prosopis juliflora stem was subjected to steam at reduce temperature (121°C) for one hour residence time initially. Further acid and alkali treatment was carried out individually followed by combinations of acid and sonication, alkali and sonication. Sodium hydroxide, potassium hydroxide, hydrochloric acid, sulphuric acid and nitric acid were used with 3 per cent (w/v) and 3 per cent (v/v) concentration under temperature range of 60-90°C for 60 min incubation time. Sonication under 60°C for 5 min and 40 KHz frequency was carried out. Pre-treated sample were further characterised using field emission scanning electron microscope and Fourier transform infrared spectroscopy to understand the changes in surface morphology and functional characteristics. Findings – In sono assisted acid treatment-based method, nitric acid yields better cellulose content at 70°C and removes lignin that even at increased temperatures no burning was observed. Originality/value – The paper adds to the scarce research available on the combination of auto hydrolysis coupled with sono assisted acid/alkali hydrolysis which is yet to be practiced.


2021 ◽  
Vol 15 (2) ◽  
pp. 194
Author(s):  
RIZKA NURLAILA

Rice straw is a waste from rice plants that contains 37.71% cellulose, 21.99% hemicellulose, and 16.62% lignin. High cellulose content in rice straw can be used as raw material for the manufacture of Carboxymethyl Cellulose (CMC). CMC is a cellulose derivative widely used in food, pharmaceutical, detergent, textile and cosmetic products industries as a thickener, stabilizer of emulsions, or suspensions and bonding. This study aims to process rice straw waste into CMC with variations in sodium monochloroacetate of 5,6,7,8 and 9 grams. The method used in this research is by synthesis using 15% NaOH solvent, with a reaction time of 3.5 hours and 5 grams of rice straw. The results showed that the best CMC was obtained at a concentration of 9 grams of sodium monochloroacete with a yield characterization of 94%, pH 6, water content of 13.39%, degree of substitution (Ds) of 0.80, and viscosity of 1.265 cP.


METANA ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 69-80
Author(s):  
Adhi Setiawan ◽  
Febby Dwi Melanny Anggraini ◽  
Tarikh Azis Ramadani ◽  
Luqman Cahyono ◽  
Mochammad Choirul Rizal

Jerami padi memilki kandungan selulosa yang dapat dimanfaatkan sebagai bahan baku pembuatan bioplastik. Penelitian ini bertujuan untuk mensintesis bioplastik dari bahan baku jerami padi menggunakan perlakuan pelarut organik serta menganalisis pengaruh rasio massa pati dengan selulosa karakteristik produk bioplastik. Proses delignifikasi jerami menggunakan larutan etanol 5% dan 35% pada suhu 80oC selama dua jam. Bioplastik dibuat dengan rasio massa pati dengan selulosa sebesar 1:0,5; 1:1; dan 1:1,5. Karakterisasi menggunakan metode SEM, XRD, TG-DTA, uji tarik, uji transmisi uap, serta uji degradasi. Hasil penelitian menunjukkan bahwa proses delignifikasi menggunakan etanol menyebabkan peningkatan kadar selulosa serta kristalinitas jerami. Morfologi bioplastik menunjukkan permukaan yang tidak rata serta terdapat bagian matriks yang terpisah dengan fiber. Hasil TG-DTA menunjukkan pengurangan massa bioplastik sebesar 81,01% pada suhu 550oC. Hasil kuat tarik terbaik pada bioplastik yang dibuat dengan rasio massa pati dengan selulosa 1:0,5 pada konsentrasi delignifikasi etanol 35%. Nilai kuat tarik yang diperoleh sebesar 8,773 Mpa. Pengujian degradasi bioplastik dilakukan selama 10 hari diperoleh nilai % degradasi terbesar bioplastik adalah sebesar 99,9%. Rice straw contains cellulose which can be used as raw material for making bioplastics. This study aims to synthesize bioplastics from rice straw using organic solvent treatment and analyze the effect of the mass ratio of starch to cellulose on the characteristics of bioplastic products. The straw delignification process used 5% and 35% ethanol solution at 80oC for two hours. Bioplastics are made with a mass ratio of starch to cellulose of 1:0.5; 1:1; and 1:1.5. Characterization using SEM, XRD, TG-DTA methods, tensile test, vapour transmission test, and degradation test. The results showed that the delignification process using ethanol caused an increase in cellulose content and straw crystallinity. The morphology of the bioplastic shows an uneven surface and there are parts of the matrix that are separated from the fiber. The results of TG-DTA showed a reduction the mass of bioplastic by 81.01% at a temperature of 550oC. The best tensile strength results in bioplastics made with a mass ratio of starch to cellulose 1:0.5 at a delignification concentration of 35% ethanol. The tensile strength value obtained was 8,773 Mpa. The bioplastic degradation test was carried out for 10 days and the largest percentage of bioplastic degradation was 99.9%.


2021 ◽  
Vol 912 (1) ◽  
pp. 012062
Author(s):  
A Pranata ◽  
H Nasution ◽  
H Harahap ◽  
A Yustira

Abstract Environmental pollution caused by the use of conventional plastics is increasing. This is due to the high use of conventional plastics and the difficulty of being degraded in nature. Several studies continue to be developed to make plastics that are easily degraded in nature, namely bioplastics. Bioplastic is a type of plastic made from renewable materials and can be decomposed in nature with the help of microorganisms. The manufacture of bioplastics is done by dissolving raw materials such as rice straw, sugarcane bagasse, cocoa husks, and tea waste into various solvents, namely trifluoroacetic acid (TFA), N, N-dimethylformamine (DMF), trifluoroacetic acid anhydride (TFAn), and citric acid. The resulting bioplastics were analyzed for tensile strength and elongation at break. The results showed that the use of rice straw as a raw material in the manufacture of bioplastics showed good results where the composition of the high cellulose content of rice straw was 61.8% and the tensile strength that had met SNI was 43 MPa using trifluoroacetic acid (TFA) as a solvent. However, a good elongation at break was produced by cocoa husks with a value of 28% using trifluoroacetic acid (TFA) and trifluoroacetic anhydride (TFAn) as solvents.


Author(s):  
Suryati Suryati ◽  
Meriatna Meriatna ◽  
Sulhatun Sulhatun ◽  
Dwi Ayu Lestari

Rice straw is one of material containing cellulose to produce Carboxymethyl Cellulose (CMC). CMC is a non toxic polysaccharide that produces from cellulose that widely used in the pharmaceutical, food, textile, detergent, and cosmetic products industries. There are two stages usually use to produce CMC which are mercerization and esterification processes. Rice straw waste is one of the materials to produce CMC, it has a cellulose content of 37.7%, hemi-cellulose 21.99%, and lignin 16.62 %.  BPS Aceh shown that the total rice harvested area was 310.01 hectares, with a total production of 1.71 million tons, and rice produced at 982.57 thousand ton. This study aims to reduce waste and environmental pollution caused by rice straw and collects information of rice straw as a basic material to produce of carboxymethyl cellulose and to increase the economic value of rice straw.  The effects of various wieght parameters sodium monochloroacetate on chemical properties of CMC that produce from rice straw were investigated in this research. Rice straw was collected from a rice field in Nisam, North Aceh. The research conducted by synthesizing 5 grams rice straw for 5.5 hours using NaOH and Sodium Monochloroacetate solutions. With variations weight of sodium monochloroacetate are 5,6,7,8 and 9 grams. The characterization of CMC was carried out by Fourier Transform Infrared (FTIR), CMC yield, DS, Viscosity, water content, pH. The result shows that addition of sodium monochloroacetate was significant factors influence the chemical properties on CMC. The CMC that produced in this study achieved to National Indonesia Standard (SNI).


2018 ◽  
Vol 38 (2) ◽  
pp. 133
Author(s):  
Dewi Maya Maharani ◽  
Khulafaur Rosyidin

Carbon sources in the form of sugar to be converted into bioethanol are rapidly developed, they are so called as the first generation, the second generation, and the third generation. The petiole of banana is the second generation of lignocellulose which is a waste and potential in Indonesia to be used as the raw material of bioethanol production. This study aimed to determine the effect of the microwave to the content of petiole`s flour of “gepok” varieties and to know the effect of pretreatment time as well as the ratio of petiole mass to the resulted flour with the solvent of NaOH for bioethanol production. The 20 g of petiole with the size of 60 mesh was dissolved into NaOH 0.5 M with the variation of solvent volume 150 mL, 200 mL and 250 mL then was pretreated with microwave as long as 20, 30, and 40 minutes. Annova resulted that time variable affected the cellulose content however the volume didn`t. Cellulose is a compound which is going to be converted into glucose. Hence, in this study, the lowest decrease of cellulose 350,20 mg/g was chosen from the microwave pretreatment with a yield of 93,10% at 20 g: 250 mL for 30 minutes.  ABSTRAKSumber karbon dalam gula untuk dikonversi menjadi bioetanol banyak mengalami perkembangan, mulai dari sumber bioetanol generasi satu, generasi dua dan generasi tiga. Gedebog pisang merupakan salah satu limbah berlignoselulosa generasi dua yang potensial di Indonesia dan memiliki kandungan selulosa tinggi yang dapat dimanfaatkan sebagai bahan baku produksi bioetanol. Penelitian ini bertujuan untuk mengetahui pengaruh gelombang microwave terhadap kandungan selulosa tepung (gedebog) pisang kepok dan mengetahui pengaruh lama pretreatment serta perbandingan massa bahan dengan volume pelarut NaOH terhadap kandungan selulosa tepung (gedebog) pisang kepok pada proses pretreatment yang dimanfaatkan untuk produksi bioetanol. Gedebog pisang ukuran 60 mesh sebanyak 20 g dilarutkan pada larutan NaOH 0,5 M dengan variasi volume pelarut 150 mL, 200 mL, dan 250 mL, selanjutnya diberi perlakuan (pretreatment) gelombang microwave dengan variasi waktu 20, 30 dan 40 menit. Pada hasil uji lanjut Annova menyatakan bahwa variabel waktu memberikan pengaruh nyata terhadap kandungan selulosa sedangkan interaksi antara variabel dan volume tidak memberikan pengaruh nyata terhadap kandungan selulosa. Selulosa merupakan senyawa yang akan dikonversi lebih lanjut menjadi glukosa. Sehingga pada penelitian ini memilih penurunan selulosa terendah yaitu menjadi 350,20 mg/g akibat pretreatment microwave-NaOH dengan rendemen 93,10% pada perlakuan massa bahan dengan volume pelarut 20 g:250 mL dengan waktu 30 menit.


Sign in / Sign up

Export Citation Format

Share Document