scholarly journals Water Balance Supporting the Irrigation Water Demand in Java Island, Indonesia

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Yudha Mediawan ◽  
Lily Montarcih ◽  
Widandi Soetopoi ◽  
Tri Budi Prayogo

Java is the most populous island with the largest percentage of rice fields in Indonesia. However, rice fields in Java Island often experience water shortages, so an analysis of the potential water availability for irrigation in Java is required. This research aims to analyze water's potential to meet irrigation water needs in each catchment area in Java. In this research, the potential for irrigation water in Java is calculated based on the balance of water balance between water availability and DMI and Irrigation water needs. This research is divided into two parts: (1) analysis of water availability using the WFLOW hydrological simulation; and (2) water demand analysis based on population statistical data. Based on this research, it can be concluded that the water balance between water resources and irrigation water needs in Java is still in the surplus category, even though there are deficits in several catchment areas (WS): in the Kepulauan Seribu, Wiso Gelis, and Welang Rejoso WS. WS with the most water availability is generally located in wide (WS) areas, while several WS with abundant water needs is generally located in WS with the densest population. According to The Central Bureau of Statistics (BPS), the agricultural area in Java has decreased by an average of 20 thousand hectares per year, so that the demand for irrigation water on the island of Java will also decrease. Consequently, the excess water potential in Java Island needs to be allocated to meet the needs of DMI, which are increasing every year. In addition, the results also show that the development of irrigation areas in the future should be focused on large (WS) areas that have the potential for significant amounts of irrigation water. 

2020 ◽  
Vol 3 (1) ◽  
pp. 387-394
Author(s):  
Ivan Mirza ◽  
Ella Meilianda ◽  
Azmeri Azmeri

The Cubo Trienggadeng Irrigation scheme has a potential area of 1,545 Ha while the functional area is 1,090 Ha. Based on the Irrigation Network scheme, Cubo Trienggadeng Irrigation Area consists of 3 (three) zones: Zone I, Zone II and Zone III. In Zone III of the Cubo Trienggadeng Irrigation Area which is the latest area receiving water from the Cubo Trienggadeng Weir often occurs in water shortages especially during the Gadu planting season (second planting season). Embung Paya Sepat is the reservoar found in Zone III D.I. Cubo Trienggadeng that is not being fully optimized in use. This study aims to optimize the utilization of Paya Sepat Reservoar so that it can meet irrigation water demand in Zone III D.I Cubo Trienggadeng by using the Water Balance method. This reservoar does not have a channel that supplies inflow discharge, so rainwater harvesting becomes a parameter in analyzing the supply of water to the reservoar. The optimization technique used uses a non-linear program using the Solver facility in Microsoft Excel software. Based on the results of the calculation of irrigation water requirements for an area of 204.50 Ha in the Gadu planting season, the maximum volume of irrigation water demand is 40,461,55 m3 at first periode in June, from the results of the optimization using the Maximize Release method, the results show that the water reservoar in Paya Sepat Reservoar can meet the water requirements in the Gadu planting season with an average reliability of 100%.. Therefore it is necessary to regulate the release of irrigation water that is well regulated and coordinated between the reservoar management and water users/farmers.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
I Made Mudiasa ◽  
IG. B Sila Dharma ◽  
I Ketut Suputra

Abstract : Tukad Penet is one of the biggest rivers in Bali which is used to support farming and fresh water demand. The increasing of water demand in various sectors such as for irrigation and drink water recently using water from Yeh Penet source shows the over use of its water has caused some conflicts between the use of the water user for irrigation and another use. Therefore, it was needed to review the use of Yeh Penet water to see how big the potential of its water that could be exploited to support the water source demand. The optimal analysis of water usage was carried out in six regional irrigation (DI) used Penet river water such as DI Peneng, DI Kacangan, DI Luwuscarang Sari, DI Penarungan, DI Kapal and DI Munggu. This analysis was based on cropping, planting and water management as well as a maximum water raw demand of the regional company of drinking water (PDAM) in Tabanan and Badung regency. Based on the simulation result, water availability in each irrigation regional (DI) depended on the cropping and planting. It was needed to provide the planting and rotation system for some irrigation regionals in river fluctuation discharge. The deficit of irrigation water balance occurred in DI Peneng, DI Luwuscarang sari, and DI Kacangan. The optimal use of irrigation water in the third irrigation regional was carried out by using planting stimulation and water management. The water balance analysis result at watershed in the part of downstream Penet watershed showed the availability of water surplus occurred in alternative plan I and II. The water balance analysis showed water availability in alternative plan I of a minimum 0.04 million m3 and maximum 1.43 million m3, whereas in alternative plan II the wasted water availability of a maximum 0.25 million m3 and a maximum 1.51 million m3. The potential development of Penet watershed in alternative plan I was 0.67 million m3 (0.52 m3/sec) and in alternative plan II was 0.76 million m3 (0.58 m3/sec) was not able to support the total water demand in Badung and Tabanan regency. Besides, the water source development of Penet watershed only occurred in downstream part of Yeh Penet river to avoid some conflicts of water utilization in Penet watershed.


2009 ◽  
Vol 21 ◽  
pp. 73-80 ◽  
Author(s):  
L. Menzel ◽  
J. Koch ◽  
J. Onigkeit ◽  
R. Schaldach

Abstract. Within the GLOWA Jordan River project, a first-time overview of the current and possible future land and water conditions of a major part of the Eastern Mediterranean region (ca. 100 000 km2) is given. First, we applied the hydrological model TRAIN to simulate current water availability (runoff and groundwater recharge) and irrigation water demand on a 1 km×1 km spatial resolution. The results demonstrate the scarcity of water resources in the study region, with extremely low values of water availability in the semi-arid and arid parts. Then, a set of four divergent scenarios on the future of water has been developed using a stakeholder driven approach. Relevant drivers for land-use/land-cover change were fed into the LandSHIFT.R model to produce land-use and land-cover maps for the different scenarios. These maps were used as input to TRAIN in order to generate scenarios of water availability and irrigation water demand for the region. For this study, two intermediate scenarios were selected, with projected developments ranging between optimistic and pessimistic futures (with regard to social and economic conditions in the region). Given that climate conditions remain unchanged, the simulations show both increases and decreases in water availability, depending on the future pattern of natural and agricultural vegetation and the related dominance of hydrological processes.


2020 ◽  
Vol 8 (2) ◽  
pp. 79-87
Author(s):  
Fitriansyah Fitriansyah ◽  
Elva Shanty Widuri ◽  
Eriza Islakul Ulmi

In the management of a good irrigation system will increase the production of irrigation areas because in the Operation of an Irrigation Network should always pay attention to the Availability of Water and Water Needs and how to divide the existing water regularly and evenly so that all plants grow well. To supply water to the paddy fields and will be divided to each plot through the floodgates with an open-close system with equitable distribution so that the Water Availability and Water Needs are still metatalltimes. The research location of the Danda Besar Swamp Irrigation Area (DIR) is located in Rantau Badauh District, Barito Kuala Regency. From the results of the analysis of water availability, the minimum water requirement is 37,760 lt/sec/ha in January 1 during the rice planting season. Maximum irrigation water demand is 711,558 lt/sec/ha in April 1, which is when preparing land for palawija (maize)


2021 ◽  
Vol 15 (1) ◽  
pp. 8
Author(s):  
Alvin Pradana ◽  
Ratna Septi Hendrasari

Abstract Water is one of the sources of human life. Population growth continues to increase and results in higher utilization of water sources. This will certainly affect the availability of water in the city of Yogyakarta. Water balance is a comparison between the water availability potential and the water demand of a place in a certain period. Water balance analysis is useful for knowing the amount of excess water (surplus) or lack of water (deficit) so that water use can be managed as well as possible. The calculation was done by analyzing the 10-year rainfall data using the Thiessen Polygon method to obtain the mean rainfall value. The available debit was calculated using the F.J. Mock method. The dependable discharge was calculated with 80% reliability from the 10-year debit data. The debit data was sorted from the largest to the smallest value, so that a probability value of 80% was obtained from the interpolation of the data sequence. Water demand was calculated based on the irrigation planning standard (KP-01). The results of the study show that the average water availability in the sub-watershed of Code River Yogyakarta was 527.92lt/sec. Based on the results of the analysis, the highest water deficit occurred in the first October at 278.40 l/sec and the lowest deficit was in the second July at 73.01 l/sec. However, the availability of water in certain months was quite abundant. Therefore, it is necessary to do a special study so that water is not wasted and can be used to cover water shortages in dry months. Keywords: Water balance, Water availability, Water demand, Code river, Thiessen polygon, FJ mock


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


2017 ◽  
Vol 60 (6) ◽  
pp. 1917-1923
Author(s):  
David V. Carrera-Villacrés ◽  
Iveth Carolina Robalino ◽  
Fabian F. Rodríguez ◽  
Washington R. Sandoval ◽  
Deysi L. Hidalgo ◽  
...  

Abstract. Fog catchers have been successfully applied in several countries around the world. In Ecuador, the Galte communities in the Andean region suffer from water deficits because they are located at an altitude higher than 3500 m above sea level. Rainfall in the area is relatively low, about 600 mm per year, with high evapotranspiration of approximately 615.74 mm per year. This study aimed to install fog catchers in Galte in 2014 and 2015 to help meet the communities’ water needs. The fog catcher system was designed to satisfy the irrigation water demand for local agricultural production, mainly maize, based on estimates using the Blaney-Criddle method. Every day throughout the year, each fog catcher collected 5 to 20 L of water per m2 of catcher area. The results indicate that the fog catcher system can meet about 5% of the local water demand for agricultural production. Keywords: Ecuador, Evaporation, Evapotranspiration, Precipitation, Water deficit.


Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 9
Author(s):  
Siti Nurdhawata ◽  
Bambang Dwi Dasanto

<em>Generally, reservoir can overcome problem of water availability in particular region. The reservoir collects excess water during rainy season to be used at the time of water shortage during dry season. In Pidie, the largest water sources are from Krueng Baro Geunik and Krueng Tiro. The reservoir is located at Krueng Rukoh with Krueng Tiro as the source of water supply. The reservoir provides water for irrigating and supplying domestic water in Baro (11.950 ha) and Tiro (6.330 ha) areas. There are 13 districts (216718 inhabitants) use the water from this reservoir. Given the population growing at rate of 0.52% then the water demand in the region increases. The aim of study was to estimate the volume of water entering the reservoir using the tank model. Calibration curve between the tank model output and observation data showed good correlation (R<sup>2</sup> = 0.7). The calibrated model was then used to calculate the discharge at Krueng Baro Geunik. A water balance analysis showed that the highest deficit occurred in September and the highest surplus in November. Based on this analysis, the capacity of Krueng Rukoh reservoir is able to fulfill its function assuming the rate of population growth and the irrigation area are constant.</em>


2020 ◽  
Vol 9 (10) ◽  
pp. e1969108391
Author(s):  
Fabiane Kazue Arai ◽  
Diovany Doffinger Ramos ◽  
Hugo Justino Inocêncio ◽  
Felipe André dos Santos

Global demand for water has been increasing per year due to population growth, economic development, and changes in consumption patterns, among other factors. This increase in water demand is expected to continue in the next decades. The objective of this work was to evaluate the use of different criteria to grant the use of water from the Ivinhema river basin, Brazil. Monthly periods were compared to annual periods to calculate the reference flows Q7,10 and Q95. The relative differences in water availability using different reference flow rates for water concession were quantified. The replacement of the annual criteria (standard in Brazil) for water concession by 50% of monthly Q7,10 and 70% of monthly Q95 can potentially increase the use and improve the management of water resources. The best criteria to award grants is the monthly Q7,10, which despite being more restrictive, it allows higher flow rates when there is excess water, and lower rates in the months of low water availability.


2020 ◽  
Author(s):  
Iman Haqiqi ◽  
Danielle S. Grogan ◽  
Thomas W. Hertel ◽  
Wolfram Schlenker

Abstract. Agricultural production and food prices are affected by hydroclimatic extremes. There has been a large literature measuring the impacts of individual extreme events (heat stress or water stress) on agricultural and human systems. Yet, we lack a comprehensive understanding of the significance and the magnitude of the impacts of compound extremes. Here, we combine a high-resolution weather product with fine-scale outputs of a hydrological model to construct functional indicators of compound hydroclimatic extremes for agriculture. Then, we measure the impacts of individual and compound extremes on crop yields focusing on the United States during the 1981–2015 period. Supported by statistical evidence, we confirm that wet heat is more damaging than dry heat for crops. We show that the average damage from heat stress has been up to four times more severe when combined with water stress; and the value of water experiences a four-fold increase on hot days. In a robust framework with only a few parameters of compound extremes, this paper also improves our understanding of the conditional marginal value (or damage) of water in crop production. This value is critically important for irrigation water demand and farmer decision-making – particularly in the context of supplemental irrigation and sub-surface drainage.


Sign in / Sign up

Export Citation Format

Share Document