scholarly journals COMPARATIVE STUDY ON ANTIMICROBIAL ACTIVITY OF TULSI (OCIMUM SANCTUM) AND NEEM (AZADIRACHTA INDICA) METHANOL EXTRACT

Author(s):  
Vipul Kumar ◽  
Anurag Chakraborty ◽  
Manpreet Kaur ◽  
Sony Pandey ◽  
Manoj Kumar Jena

Objective: This study was focused on to compare the antimicrobial activity of methanolic leaf extracts of tulsi and neem.Methods: We have chosen tulsi (Ocimum sanctum) and neem (Azadirachta indica) to compare their antimicrobial activity toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Phytochemical extracts have been made by the use of methanol as solvent and dried leaf powder by the cold maceration extraction process. Phytochemical analysis for some secondary metabolites has been done using standard protocols. Nutrient agar plates were inoculated with the above-mentioned microorganisms by spreading bacterial inoculum on the surface of the media. Wells (6 mm in diameter) were punched in the agar. The phytochemical extracts of neem and tulsi were allowed to diffuse into the medium, and after incubation of 24 h at 37°C, the zones of inhibition were observed.Results: Statistical analysis showed that tulsi was more effective toward S. aureus while neem was more effective toward E. coli. Minimum inhibitory concentration (MIC) of tulsi for both the microorganisms was 0.4 g/ml, and the MIC of neem for both the microorganisms was 0.2 g/ml. When both the tulsi and neem extract were mixed with each other for every concentration at equal volume, they have shown better effects in comparison to individual neem or tulsi extract and also the MIC got reduced to 0.2 g/ml for both the bacteria.Conclusions: Leaf extracts of both the A. indica and O. sanctum have shown antimicrobial activity against E. coli and S. aureus. A. indica has higher antimicrobial activity against S. aureus, whereas the O. sanctum was found to be more effective against E. coli (indicated by the zone of inhibition). When both the extracts were mixed with each other, they have shown a better effect toward both bacteria.

2021 ◽  
Vol 10 (25) ◽  
pp. 1899-1903
Author(s):  
Mohsin Ali Khan ◽  
Shadma Yaqoob ◽  
Sharique Ahmad

BACKGROUND Azadirachta indica, commonly known as neem, neem tree or Indian lilac, Limbo, Nim, Nimba, Medusa and Vempu. It is typically grown in tropical and subtropical regions. Neem belongs to family meliaceae. Neem is a native tree of India. It is also called “village pharmacy of south Asia” (India) because of its enormous medicinal properties and people use it most of the time without knowing its multiple advantages. This study was done to know the efficacy of medicinal plant named Azadirachta indica (Neem) against pathogenic microorganisms and about its utility as disinfectant and floor cleaner. METHODS Agar well diffusion method, Culture plate method, inoculum preparation & its subculture methods were used to determine the antimicrobial activity of the neem leaf extract. Different concentrations of neem leaf extracts in culture plates were used for the study. In this method inhibited zones were measured. RESULTS Neem leaf extracts showed considerable antimicrobial activity against four target pathogens. In agar well diffusion method it showed maximum antimicrobial activity against Enterococcus and Staphylococcus aureus. Growth of inhibition was increased as the concentration of the neem extract in agar media increased and was maximum for Staphylococcus aureus. CONCLUSIONS The extract of A. indica, has antimicrobial activity against target pathogens Enterococcus, Staphylococcus aureus, Pseudomonas, and E.coli. With the old medicinal knowledge on neem, better economic and therapeutic utilization can be done by using modern approaches of drug development. KEY WORDS Neem Leaf extract, Antimicrobial Activity, Agar Well Diffusion Test, Zone of Inhibition


Med Phoenix ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Dipak Bhargava ◽  
Abhilasha Saha ◽  
Keshab Chandra Mondal ◽  
Bijaya Raj Pandit ◽  
Amrullah Shidiki ◽  
...  

Background: Plants and plant-based medicaments are the basis of many of the modern pharmaceuticals we use today for our various ailments. The aim of the present study was to find out the bioactive chemical constituents such as flavonoids, alkaloids, tannins, saponins, carbohydrate and to find out the anti E. coli activity of the ethanolic extracts of traditionally used ten medicinal plants of Nepal at an altitude of 1500 ft from above the sea level.Methods: Ethanolic extracts of ten commonly used medicinal plants were analyzed phytochemically and evaluated for their significant antimicrobial activity against the clinical isolates of Escherichia coli. Mean zones of inhibition were calculated for each of the extracts.Results: The results revealed that though all the plants of the high altitude showed some degree of antimicrobial activity, the leaf extract of Syzygium cumini (5.7±0.3 cm), Chromolaena odorata (5.2±0.4 cm), Ocimum sanctum (4.7±0.6 cm) and Justicia adhatoda (3.2±0.3 cm) were most effective against the clinical isolates of E. coli, whereas the other six plant extracts were least effective against the clinical isolates of E. coli. Qualitative phytochemical analysis of the extracts revealed the presence of bioactive components. Seven of the plant extracts contain alkaloids, six of them contain glycosides, four of them contain flavonoids, three of them contain carbohydrate, oil and fats, two of them contain tannins, whereas only one of them contains saponins.Conclusion: The result of this study justified the folkloric usage of the studied plants and concluded that these plants extract have great potential in finding new clinically effective antimicrobial compounds.MED Phoenix Volume (1), Issue (1) July 2016, page: 3-9


2019 ◽  
Vol 6 (2) ◽  
pp. 337-343
Author(s):  
Rupaly Akhter ◽  
Md Wadud Sarker

The main objective of the study was to evaluate antibacterial activity of Neem leaf extracts (methanolic) against E. coli and Salmonella using different test such as production performances, biochemical, hematological, bacteriological tests and zone of Inhibition (ZOI) method. Azadirachta indica (neem) leaf extract was used to test growth performance, biochemical , hematological parameters and antimicrobial activity against disease causing bacteria Escherichia coli and Salmonella. That’s result indicated, methanolic extract of neem increased body weight, feed conversion ratio, decreased mortality rate from different microbial diseases.it also helped to maintain normal biochemical parameter for better health life of chicken. Neem extract increased leukocyte counts and decreased total viable count of bacteria in cecal faeces. Methanol extracts of varying concentrations 1.0, 1.5, 2.0 and 2.5% was prepared and tested against test organisms using agar diffusion method. Gentamicin of same varying concentrations was used to compare the effect of antimicrobial activity of methanol leaf extract. Data revealed that methanol extract of Neem has shown highest antimicrobial activity. Leaf extract of A. indica (Neem) had exhibited a potent antibacterial activity against various strain (E. coli, Salmonella spp) of bacterial pathogens, it showed almost nearest to microbial activity of gentamycin. Res. Agric., Livest. Fish.6(2): 337-343, August 2019


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3040
Author(s):  
Alexandra Ciorîță ◽  
Cezara Zăgrean-Tuza ◽  
Augustin C. Moț ◽  
Rahela Carpa ◽  
Marcel Pârvu

The phytochemical analysis of Vinca minor, V. herbacea, V. major, and V. major var. variegata leaf extracts showed species-dependent antioxidant, antibacterial, and cytotoxic effects correlated with the identified phytoconstituents. Vincamine was present in V. minor, V. major, and V. major var. variegata, while V. minor had the richest alkaloid content, followed by V. herbacea. V. major var. variegata was richest in flavonoids and the highest total phenolic content was found in V. herbacea which also had elevated levels of rutin. Consequently, V. herbacea had the highest antioxidant activity followed by V. major var. variegata. Whereas, the lowest one was of V. major. The V. minor extract showed the most efficient inhibitory effect against both Staphylococcus aureus and E. coli. On the other hand, V. herbacea had a good anti-bacterial potential only against S. aureus, which was most affected at morphological levels, as indicated by scanning electron microscopy. The Vinca extracts acted in a dose-depended manner against HaCaT keratinocytes and A375 melanoma cells and moreover, with effects on the ultrastructure, nitric oxide concentration, and lactate dehydrogenase release. Therefore, the Vinca species could be exploited further for the development of alternative treatments in bacterial infections or as anticancer adjuvants.


Author(s):  
YOJANA Y. PATIL ◽  
VAISHNVI B. SUTAR ◽  
ARPITA P. TIWARI

Objective: The present study was aimed at the biological synthesis of magnetic iron nanoparticles by using the plant extract of Tridax procumbens and also to study their antimicrobial property against gram-negative bacteria (Escherichia coli). Methods: The synthesis of magnetic iron nanoparticles was carried out by the co-precipitation method using biological methods like plant extract as reducing agent and capping agents are biocompatible and non-hazardous. These nanoparticles were characterized by UV-Visible spectroscopy, XRD (X-Ray Diffraction), and SEM (Scanning Electron Microscope). As well as antibacterial activity of the nanoparticles was carried out by agar well diffusion method and Most Probable Number (MPN) method against gram-negative E. coli (Escherichia coli) bacteria. Results: The average crystallite size of Magnetic Nanoparticles (MNPs) was found to be 72 nm by X-ray diffraction. The optical absorption band at wavelengths of 240 nm and 402 nm was obtained from the UV Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (15±0.15 mm) at 2 mg/ml and 1 mg/ml concentration was found for Magnetic Nanoparticles. In the Most Probable Number (MPN) test it is seen that the bacterial count is reduced after adding synthesized NPs into the water sample. Conclusion: The results of the present study conclude that the Magnetic Nanoparticles synthesized using Tridax procumbens leaf extracts is found to be stable and show good antibacterial activity against gram-negative (Escherichia coli) bacteria.


2011 ◽  
Vol 8 (3) ◽  
pp. 1430-1437 ◽  
Author(s):  
S. S. Deo ◽  
F. Inam ◽  
R. P. Mahashabde

The antimicrobial activity of crude methanolic and aqueous extracts ofOcimum sanctumandOcimum kilimandsacharicumagainst gram positive, gram negative and antifungal activity was evaluated to find the zone of inhibition and to set a HPLC profile or fingerprint of these extracts. The crude methanolic extract ofOcimum sanctumshowed strong antimicrobial activity againstS.aureusandC. albicansand moderate activity againstE. coliandB. subtilis. The crude methanolic extract ofOcimum kilimandsacharicumshowed strong antimicrobial activity againstS. aureus, E. coliandC. albicansat higher concentration, same as that shown by the standard forC. albicans. It showed moderate activity againstB. subtilis. The crude aqueous extracts of Ocimum sanctum showed strong antimicrobial activity againstS.aureusand moderate against others. Whereas the crude aqueous extracts ofOcimum kilimandsacharicumshowed moderate activity against the gram positive and gram negative organisms and strong activity againstC. albicansat higher concentration, same as that shown by the standard forC. albicans.


2018 ◽  
Vol 34 (6) ◽  
pp. 3145-3152
Author(s):  
Panshu Pratik ◽  
Prem Mohan Mishra

In this paper an attempt has been made to highlight the physicochemical study of methnolic extract of leaves of Tilkor carried out by soxhlet extraction process, phytochemical analysis of the extract, separations, isolation of bioactive components through Thin Layer Chromatography (TLC) as well as column chromatography respectively and characterisation of isolated compound by the means of several spectral analysis such as 1H NMR, 13C NMR, IR, U.V. Mass spectroscopy. The methanolic extract of leaves of the plant (in tropical conditions of Mithilanchal, Bihar, India) reveal the presence of phytochemicals like alkaloids, flavanoids, tannins, saponins, cardiac glycosides, steroids, terpenoids etc. The secondary metaboilities showed antimicrobial activity. The two isolated compounds were characterised by spectroscopic techniques which revealed the structure of compound A as - stigmosterol and compound B as tritriaconatane and is also found to have antimicrobial activity.


Author(s):  
Oluwaseun Raphael Aderele ◽  
Adekunle Kareem Rasaq ◽  
Johnson Oshiobugie Momoh

Aim: The study evaluates the in-vitro antimicrobial activity of Hunteria umbellata against Escherichia coli, Staphylococcus aureus and Streptococcus sp. Place and Duration of Study: The study was carried out for three months in 2019 in Biochemistry Laboratory, Department of Chemical Sciences (Biochemistry unit), School of Pure and Applied Sciences, Lagos State Polytechnic, Ikorodu, Lagos- Nigeria. Methodology: The qualitative and GC-MS analysis of Hunteria umbellata methanolic seed extract were determined using standard procedure. The antimicrobial activity was evaluated by the disc diffusion method and agar well diffusion method. The experimental data was resampled 1000 times to allow for higher degrees of freedom in carrying out t-test to test for the difference of the effect of in-vitro antimicrobial activity of H. umbellata against E. coli, S. aureus and Streptococcus sp using mathematical software R language (3.6.1 version). Line plots, histogram and t-test are used to explain the effect of antimicrobial activity of H. umbellate on the selected bacteria. MIC and MBC were determined using standard methods. Results: The Phytochemical analysis of methanolic seed extract of Hunteria umbellata showed the presence of secondary metabolites like saponins, tannins, flavonoids, steroids, phenol among others. GC-MS assay of the H. umbellata seed extract revealed the presence of eight different compounds. Agar well diffusion method was characterized by inhibition zones of 18.36±0.87, 19.13±1.03 and 21.62±2.53 mm for E.coli, S. aureus and Streptococcus sp respectively at 300 mg/ml-1 and 21.70± 1.60, 23.83± 2.64 and 28.57± 1.52 for E.coli, S. aureus and Streptococcus sp respectively at 500 mg/ml. The results of the analysis show that there is a significant difference between the effects of in-vitro antimicrobial activity of H. umbellate on 3001 and 500 mg/ml on each bacteria tested at 5% level of significance. E.coli, S. aureus and Streptococcus sp were tested against 12 standard antimicrobial agents, of which six was sensitive and another six was resistance to E .coli, seven was sensitive, and five was resistance to S. aureus while four was resistance and eight sensitive to Streptococcus sp. The minimum inhibitory concentration (MIC) for E.coli, S. aureus, and  Streptococcus sp were 250, 125 and 31.25 mgml-1 while their minimum bactericidal concentration (MBC) were 500, 250 and 125 respectively. MIC and MBC tests showed that H. umbellata methanolic seed extract had noticeable bactericidal effects with MBC/MIC values ranging between 2 to 4. The extract has strong potency against these microorganisms with Streptococcus sp being the most susceptible. Conclusions: Hunteria umbellata has potential as natural therapeutic agents against E. coli, S. aureus and Streptococcus sp and they may prevent pathogenic diseases.


Sign in / Sign up

Export Citation Format

Share Document