scholarly journals BLACK TURMERIC DATABASE: A DATABASE OF NATURAL COMPOUNDS FROM CURCUMA CAESIA ROXB.

Author(s):  
Mukunthan K S ◽  
Balaji B ◽  
Patrl Tn

Objective: Most species have their trademark metabolites or a class of chemicals that are generally disseminated inside the genus variety. Secondary metabolites from the black turmeric are predominantly camphor, terpenes, lactones, alkaloids, and phenols classification. A database was constructed with the predicted absorption, distribution, metabolism, elimination, and toxicity, druglikeliness, and physiochemical properties of the exclusive black turmeric 103 compounds. Methods: The interface has been designed using Microsoft Structured Query Language platform, keeping in mind the ease of use for a researcher. To support this, the entire set of chemicals and their properties was uploaded in database. Database is used as it is very efficient and supports multiple users at the same time.Results: Black turmeric database gives complete data of compounds by means of 4 segments. Physiochemical, pharmacodynamics, pharmacokinetics, druglikeliness, and molecular information are displayed with chemical structure.Conclusion: We solidly believe that the information from this database are the sources to infer novel pharmaceutical chemical compounds for medication.

Author(s):  
Georgiana Uță ◽  
Denisa Ștefania Manolescu ◽  
Speranța Avram

Background.: Currently, the pharmacological management in Alzheimer's disease is based on several chemical structures, represented by acetylcholinesterase and N-methyl-D-aspartate (NMDA) receptor ligands, with still unclear molecular mechanisms, but severe side effects. For this reason, a challenge for Alzheimer's disease treatment remains to identify new drugs with reduced side effects. Recently, the natural compounds, in particular certain chemical compounds identified in the essential oil of peppermint, sage, grapes, sea buckthorn, have increased interest as possible therapeutics. Objectives.: In this paper, we have summarized data from the recent literature, on several chemical compounds extracted from Salvia officinalis L., with therapeutic potential in Alzheimer's disease. Methods.: In addition to the wide range of experimental methods performed in vivo and in vitro, also we presented some in silico studies of medicinal compounds. Results. Through this mini-review, we present the latest information regarding the therapeutic characteristics of natural compounds isolated from Salvia officinalis L. in Alzheimer's disease. Conclusion.: Thus, based on the information presented, we can say that phytotherapy is a reliable therapeutic method in a neurodegenerative disease.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 140
Author(s):  
Zorica Popović ◽  
Dijana Krstić-Milošević ◽  
Milena Marković ◽  
Vera Vidaković ◽  
Srđan Bojović

Natural populations of Gentiana asclepiadea L., located at two mountainous sites, were HPLC-analyzed regarding the contents of six representative secondary metabolites. The contents of swertiamarin (SWM), gentiopicrin (GP), sweroside (SWZ), mangiferin (MGF), isoorientin (ISOOR), and isovitexin (ISOV) were determined in six populations (three per study site), and separately for aboveground and belowground plant parts. PCA showed a clear separation of four groups according to the contents of the analyzed secondary metabolites. Out of six analyzed compounds, five were present in all samples and only one (SWZ) was found in Golija populations (belowground parts) but not in Vlasina populations, and its presence can be indicative of the geolocation of populations. Clear separation of groups was mostly affected by the different contents of chemical compounds in plant parts (aboveground versus belowground) and by the differences related to population origin (higher content of SWM and GP in belowground parts of individuals from Vlasina populations and higher content of MGF and ISOOR of individuals from Golija populations). The results of this study contribute to the spatiochemical profiling of G. asclepiadea populations and a better understanding of inter- and intrapopulation variability of pharmacologically important compounds.


2015 ◽  
Vol 62 (4) ◽  
pp. 216-228 ◽  
Author(s):  
Carlos L. Céspedes ◽  
Julio E. Alarcon ◽  
Pedro Aqueveque ◽  
David S. Seigler ◽  
Isao Kubo

Secondary metabolites are involved in diverse functions in plants, including defense and protective processes. Information concerning the biosynthesis of secondary metabolites in plants points at a constitutive or induced chemical defense, generated for protection against a variety of phytopathogenic attacks. Our phytochemical studies are aimed at finding biopesticides of botanical origin. Some plant taxa of American distribution are toxic to selected insects, fungi and bacterial strains, and their effect has been associated with the presence of phenolics, phenylpropanoids and terpenes. We have isolated some diterpenes, triterpenes, sesquiterpene lactones, flavonoids, and phenylpropanoids from members of the plant families Araucariaceae, Asteraceae, Calceolariaceae, Celastraceae, and Rhamnaceae. In addition, we have identified a number of chemical derivatives of these compound classes from the plants. A major finding indicates that compounds or their derivatives that possess antioxidant, antifungal, insect growth regulator or insecticidal activity and enzymatic inhibitors are natural compounds. Insecticidal activities were assayed against strains of lepidopteran, dipteran, and coleopteran insect pests that affect many crops. Antifungal and antibacterial activities were assayed against phytopathogenic species of filamentous fungi and bacterial strains that are pests on many crops. Our results indicate that the plant-derived compounds obtained from the abovementioned plants have excellent insect growth regulatory activity and a good potency as antifungal agents. However, little is known about the effects of these natural compounds and their derivatives on insect pests. The natural compounds that we have isolated represent a valuable resource for future studies of plant chemical defense and the role of these substances in chemical ecology.


2021 ◽  
Author(s):  
Sutaria Devanshi ◽  
Kamlesh R. Shah ◽  
Sudipti Arora ◽  
Sonika Saxena

Biotechnological tools engaged in the bioremediation process are in reality, sophisticated and dynamic in character. For specialized reasons, a broad variety of such devices are employed to produce a safe and balanced environment free of all types of toxins and so make life simpler for humans on planet Earth. Actinomycetes is one of these extremely important and functionally helpful groups. They can be used for a variety of bioremediation objectives, including biotransformation, biodegradation, and many more. Actinomycetes are one of the most varied groups of filamentous bacteria, capable of prospering in a variety of ecological settings because to their bioactive capabilities. They’re famous for their metabolic diversity, which includes the synthesis of commercially useful primary and secondary metabolites. They produce a range of enzymes capable of totally destroying all of the constituents. They are well-known for their ability to produce bioactive secondary metabolites. Members of various genera of Actinomycetes show promise for application in the bioconversion of underutilized urban and agricultural waste into high-value chemical compounds. The most potential source is a wide range of important enzymes, some of which are synthesized on an industrial scale, but there are many more that have yet to be discovered. Bioremediation methods, which use naturally existing microbes to clear residues and contaminated regions of dangerous organic chemicals, are improving all the time. In the realm of biotechnological science, the potential of actinomycetes for bioremediation and the synthesis of secondary metabolites has opened up intriguing prospects for a sustainable environment.


2020 ◽  
Vol 8 (2) ◽  
pp. 61
Author(s):  
Tessalonica Dajoh ◽  
Robert A Bara ◽  
Esther Angkouw ◽  
Medy Ompi ◽  
Rosita A Lintang ◽  
...  

Phyllidiella nigra is an organism that is suspected to have secondary metabolites because their ability to develop its self defense system by camouflage and using chemical compounds derived from their nature diet as deterrent against their predators. The purpose of this study was to isolate symbiotic bacterial derived from P. nigra, extracted and followed by, the antibacterial assays against Escherichia coli and Bacillus megaterium as well as the anti-UV assay. The results showed that the five isolates tested had an antibacterial activity with the highest average inhibition zone against E. coli DSM 498 bacteria, isolate 1 (14.67 mm), isolate 5 (14 mm), and against B. Megaterium DSM 32T bacteria, isolate 3 (13.33 mm). The three isolates which had the highest inhibition zone and P. nigra extract were tested for anti-UV assay using a UV-Vis Spectrophotometer. The results obtained isolate 3 has absorption of UV-A with the UV absorbtion maximum at λ 340 nm and P. nigra extract has absorption on UV-B radiation with UV absorption maximum at λ 290 nm. Key words: Nudibranchia, Bacteria, Anti-bacteial, Anti-UV Phyllidiella nigra merupakan organisme yang diduga memiliki metabolit sekunder karena mampu mengembangkan sistem pertahanan dirinya dengan cara kamuflase dan menggunakan senyawa kimia sebagai racun yang didapat dari makanannya. Tujuan dari penelitian ini yaitu mendapatkan isolat bakteri yang bersimbiosis dengan P. nigra, mendapatkan ekstrak dari baktri simbion, dan menguji antibakteri dan anti-UV ekstrak etil aseta bakteri simbion dengan metode difusi agar terhadap bakteri Escherichia coli dan Bacillus megaterium. Hasil penelitian didapatkan kelima isolat yang diuji memiliki aktivitas antibakteri dengan rerata zona hambat tertinggi terhadap bakteri E. coli DSM 498 yaitu isolat 1 (14,67 mm), isolat 5 (14 mm), dan terhadap baktri B. megaterium DSM 32T yaitu isolat 3 (13,33 mm). Ketiga isolat yang memiliki zona hambat tertinggi dan ekstrak P. nigra diujikan anti-UV menggunakan alat UV-Vis Spektrofotometer. Hasil yang didapat isolat 3 memiliki serapan terhadap radiasi sinar UV-A dengan puncak tertinggi pada λ 340 nm dan ekstrak P. nigra memiliki serapan terhadap radiasi sinar UV-B dengan puncak tertinggi berada pada λ 290 nm. Kata kunci: Nudibranchia, Bacteria, Anti-bacteial, Anti-UV


Author(s):  
Albert N. Badre ◽  
Tiziana Catarci ◽  
Antonio Massari ◽  
Giuseppe Santucci
Keyword(s):  

Author(s):  
Brian Stokes

Background with rationaleBusiness Intelligence (BI) software applications collect and process large amounts of data from one or more sources, and for a variety of purposes. These can include generating operational or sales reports, developing dashboards and data visualisations, and for ad-hoc analysis and querying of enterprise databases. Main AimBusiness Intelligence (BI) software applications collect and process large amounts of data from one or more sources, and for a variety of purposes. These can include generating operational or sales reports, developing dashboards and data visualisations, and for ad-hoc analysis and querying of enterprise databases. Methods/ApproachIn deciding to develop a series of dashboards to visually represent data stored in its MLM, the TDLU identified routine requests for these data and critically examined existing techniques for extracting data from its MLM. Traditionally Structured Query Language (SQL) queries were developed and used for a single purpose. By critically analysing limitations with this approach, the TDLU identified the power of BI tools and ease of use for both technical and non-technical staff. ResultsImplementing a BI tool is enabling quick and accurate production of a comprehensive array of information. Such information assists with cohort size estimation, producing data for routine and ad-hoc reporting, identifying data quality issues, and to answer questions from prospective users of linked data services including instantly producing estimates of links stored across disparate datasets. Conclusion BI tools are not traditionally considered integral to the operations of data linkage units. However, the TDLU has successfully applied the use of a BI tool to enable a rich set of data locked in its MLM to be quickly made available in multiple, easy to use formats and by technical and non-technical staff.


Author(s):  
Robert N. McLay ◽  
Derek M. Miletich ◽  
Nathaniel A. Brown ◽  
Lesley Ross

To many systems of thinking, pharmacology is, by definition, not alternative medicine. However, many alternative treatments, such as the use of herbal compounds or illicit drugs to help PTSD, are outside the scope of standard medicine yet rely on pharmacological mechanisms to support their use. In this chapter, concepts for non-traditional uses of chemical compounds are reviewed. Alternative uses of specific compounds are described. This includes: atypical uses of allopathic compounds, the use of synthetically imitated or isolated natural compounds, the pharmacology of plant-based and herbal medications, and the use of illicit substances which are normally banned in the United States.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 670 ◽  
Author(s):  
Xiaoju Dou ◽  
Bo Dong

Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.


Sign in / Sign up

Export Citation Format

Share Document