scholarly journals OPTIMIZATION OF LACTOBACILLUS PLANTARUM ACTIVITIES IN THE BIOSINTHESIS OF LIPASE ENZYMES

Author(s):  
RIRIN PUSPADEWI ◽  
PUTRANTI ADIRESTUTI ◽  
MIRA A. DEWI ◽  
INNANI MUKARROMAH ◽  
YUNIAR RAHMADINNI

Objective: Lipase was protein compounds that can be used for many human activities. Its main function was to degrade fat including 'wrapping' cholesterol which make easily flowed in the blood. The presence lipase was important because can help the digestive healthy. These enzyme can catalyze a variety of reactions including hydrolysis, alcoholysis, esterification and aminolysis. Lipase was utilized in various sectors, such as fat, oil, milk and pharmaceutical industries. This enzyme biosynthesis can be carried out by Pseudomonas aeruginosa, Lactobacillus plantarum and Aspergillus niger. Methods: The process through fermentation techniques in lipid containing substrates under optimal conditions required by microorganisms. The fermentation products produced were tested for the presence of lipase enzymes qualitatively and quantitatively. The biosynthesis process can be influence by changes in pH, temperature and the presence of glucose. This study aimed to determine the ability of L. plantarum to produce lipases with vegetables oil substrates. The research used L. plantarum carried out at 37 °C for 24-48 h and pH 6-8 in the vegetable oil substrates. Results: The fermentation products showed hydrolysis reaction to the test media containing oil lipid with lipase levels of 2.708-3.3000 U/ml Conclusion: The results showed that Lactobacillus plantarum can synthesize the lipase enzyme in palm oil and corn oil as substrates.

2022 ◽  
Vol 961 (1) ◽  
pp. 012087
Author(s):  
A A Ali ◽  
K W Hameed ◽  
M I Nadder

Abstract The isolates of Pseudomonas aeruginosa bacteria were uncovered in the soil surrounding the roots of palms and public gardens in Baghdad for the production of lipase enzyme. The lipase enzyme has many applications that are included in the textile and food industry, and the manufacture of detergents and medical preparations. Several tests such as temperature change, incubation period, change of lipid sources, nitrogen sources such as peptone and tryptone, and carbon sources such as glucose and lactose were carried out to choose suitable conditions for bacterial growth. The results indicated studying the conditions affecting production, it was noted that the best production was when using the culture medium to which 1% of corn oil was added, pH 7, at a temperature of 37 °C and an incubation period of 24 hours in vibrating incubator at 151 rpm, The soil surrounding the roots of the plant is a good reservoir for the presence of Pseudomonas aeruginosa bacteria


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Benjamin R. Lundgren ◽  
Zaara Sarwar ◽  
Kyle S. Feldman ◽  
Joseph M. Shoytush ◽  
Christopher T. Nomura

ABSTRACTDimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives inPseudomonas aeruginosaPAO1. First, results from cell growth experiments showed that deletion of eithersfnR2orsfnG, a gene encoding a DMSO2-monooxygenase, significantly inhibits the ability ofP. aeruginosaPAO1 to use DMSP, DMS, DMSO, and DMSO2as sulfur sources. Deletion of thesfnR1ormsuEDCgenes, which encode a MSA desulfurization pathway, did not abolish the growth ofP. aeruginosaPAO1 on any sulfur compound tested. Second, data collected from β-galactosidase assays revealed that themsuEDC-sfnR1operon and thesfnGgene are induced in response to sulfur limitation or nonpreferred sulfur sources, such as DMSP, DMS, and DMSO, etc. Importantly, SfnR2 (and not SfnR1) is essential for this induction. Expression ofsfnR2is induced under sulfur limitation but independently of SfnR1 or SfnR2. Finally, the results of this study suggest that the main function of SfnR2 is to direct the initial activation of themsuEDC-sfnR1operon in response to sulfur limitation or nonpreferred sulfur sources. Once expressed, SfnR1 contributes to the expression ofmsuEDC-sfnR1,sfnG, and other target genes involved in DMS-related metabolism inP. aeruginosaPAO1.IMPORTANCEDimethyl sulfide (DMS) is an important environmental source of sulfur, carbon, and/or energy for microorganisms. For various bacteria, includingPseudomonas,Xanthomonas, andAzotobacter, DMS utilization is thought to be controlled by the transcriptional regulator SfnR. Adding more complexity, some bacteria, such asAcinetobacter baumannii,Enterobacter cloacae, andPseudomonas aeruginosa, possess two, nonidentical SfnR proteins. In this study, we demonstrate that SfnR2 and not SfnR1 is the principal regulator of DMS metabolism inP. aeruginosaPAO1. Results suggest that SfnR1 has a supportive but nonessential role in the positive regulation of genes required for DMS utilization. This study not only enhances our understanding of SfnR regulation but, importantly, also provides a framework for addressing gene regulation through dual SfnR proteins in other bacteria.


2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Flávia Cíntia de Oliveira ◽  
Tamara Rezende Marques ◽  
Gustavo Henrique Andrade Machado ◽  
Thaís Cristina Lima de Carvalho ◽  
Aline Aparecida Caetano ◽  
...  

Abstract The phenolic compounds from various extracts of jabuticaba skin powder (JSP) were characterized in this study, and the antibacterial activity assessed. The phenolic compounds were extracted from the JSP using four methods: a) acetone extraction - 1 g JSP: 10 mL 70% acetone, resting for 2 hours; b) aqueous extract - 1 g JSP: 15 mL water, under agitation; c) ethanolic extract - 1 g JSP: 15 mL acidified ethanol, under agitation; and d) methanolic extract - 1 g JSP: 50 mL 50% methanol, under reflux. The antibacterial activity was evaluated by the agar diffusion assay, using Escherichia coli ATCC 11229, Salmonella choleraesuis ATCC 6539, Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 6538 and Listeria monocytogenes ATCC 19117. The ethanolic and methanolic extracts showed the highest levels of phenolic compounds, especially of cyanidin chloride, catechin and epicatechin. The extracts did not inhibit the growth of Escherichia coli and Salmonella choleraesuis, but inhibited 30% of the growth of Pseudomonas aeruginosa with an extract concentration of 250 µg mL-1. Against Staphylococcus aureus and Listeria monocytogenes the highest inhibitory effect observed was 41.8% for the ethanolic extract, followed by 36% inhibition by the methanolic extract, thus revealing the potential of these extracts as possible alternatives for use in the food and/or pharmaceutical industries.


Author(s):  
Xiaoling Qi ◽  
Li Zhang ◽  
Jing Xu ◽  
Zheying Tao ◽  
Xiaoli Wang ◽  
...  

BackgroundWe previously found that microbial disruption in Pseudomonas aeruginosa ventilator-associated pneumonia (PA-VAP) patients are long-lasting. Long-term microbial dysbiosis may lead to changes in metabolites. Short-chain fatty acids (SCFAs) are microbial fermentation products and show beneficial effects in patients with pneumonia. In this study, we aimed to explore the association between circulating SCFA levels and clinical outcomes in patients with PA-VAP.MethodsIn this study, we analyzed SCFAs in the serum of 49 patients with PA-VAP by gas chromatography-mass spectrometry analysis. Twenty of these patients died, and 29 survived. The correlation between serum SCFAs and patient survival and immune parameters was analyzed.ResultsWe developed a partial least squares discriminant analysis (PLS-DA) model to examine differential SCFAs in 49 patients with PA-VAP. Among the seven SCFAs, only acetic acid was increased in non-survivors (P = 0.031, VIP > 1). Furthermore, high levels of acetic acid (>1.96ug/ml) showed increased 90-day mortality compared to low levels of acetic acid (<1.96ug/ml) in Kaplan-Meier survival analyses (P = 0.027). Increased acetic acid also correlated with reduced circulating lymphocyte and monocyte counts.ConclusionOur study showed that increased circulating acetic acid is associated with 90-day mortality in PA-VAP patients. The decrease in lymphocytes and monocytes might be affected by acetic acid and involved in the poor prognosis.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 295
Author(s):  
Tumisi Beiri Jeremiah Molelekoa ◽  
Thierry Regnier ◽  
Laura Suzanne da Silva ◽  
Wilma Augustyn

The food and pharmaceutical industries are searching for natural colour alternatives as required by consumers. Over the last decades, fungi have emerged as producers of natural pigments. In this paper, five filamentous fungi; Penicillium multicolour, P. canescens, P. herquie, Talaromyces verruculosus and Fusarium solani isolated from soil and producing orange, green, yellow, red and brown pigments, respectively, when cultured on a mixture of green waste and whey were tested. The culture media with varying pH (4.0, 7.0 and 9.0) were incubated at 25 °C for 14 days under submerged and solid-state fermentation conditions. Optimal conditions for pigment production were recorded at pH 7.0 and 9.0 while lower biomass and pigment intensities were observed at pH 4.0. The mycelial biomass and pigment intensities were significantly higher for solid-state fermentation (0.06–2.50 g/L and 3.78–4.00 AU) compared to submerged fermentation (0.220–0.470 g/L and 0.295–3.466 AU). The pigment intensities were corroborated by lower L* values with increasing pH. The λmax values for the pigments were all in the UV region. Finally, this study demonstrated the feasibility of pigment production using green waste:whey cocktails (3:2). For higher biomass and intense pigment production, solid-state fermentation may be a possible strategy for scaling up in manufacturing industries.


2021 ◽  
Vol 0 (4) ◽  
pp. 6-11
Author(s):  
I.T. Nagieva ◽  
◽  
N.I. Ali-zadeh ◽  
T.М. Nagiev ◽  
◽  
...  

In recent years, hydrogen peroxide and nitrous oxide (1) "green oxidants" – have attracted much attention of researchers as a selective oxidizing agent for the catalytic oxidation of pyridine bases. In this regard, the reaction of pyridine oxidation by hydrogen peroxide and nitrous oxide under homogeneous conditions, in the gas phase, without the use of catalysts, at atmospheric pressure, has been experimentally investigated. Areas of selective oxidation of pyridine with hydrogen peroxide and nitrous oxide have been established, and optimal conditions have been found for obtaining valuable raw materials required in the petrochemical, chemical, and pharmaceutical industries


2011 ◽  
Vol 5 (3) ◽  
pp. 14-21
Author(s):  
Muhamed Omar Abdulatif ◽  
Hyder H. Assmaeel ◽  
Raghad kadhim Obeid ◽  
Ayat Adnan Abbas

he Xylanase producing strain Aspergillus niger was isolated from soil on potato dextrose agar in the presence of xylan as its first substrate for primary isolation, and then grown under liquid medium fermentation in the presence of crude xylan (rice husk) to produce D-Xylanase. the optimum conditions were determined as follows: the Optimum pH for xylanase production was found pH 5.0, xylanase was induced by xylan (rice husk) 0.1% and the production was (61.221 U/ml) and nitrogen source Yeast extract recorded highest enzyme production( 89.71 U/ml), and repressed by carbon source xylose the highest enzyme production (88.69 U/ml). The optimum temperature was 40°с for xylanase production was (35.15 U/ml), the optimum period after 7 days of incubation was (52.33 U/ml) ,the optimum substrate concentration 0.1% was (45.95 U/ml), and the optimum inoculum size was 1 x 106 (spore /ml) recorded (57.19 U/ml ).


Author(s):  
P Danish ◽  
Q Ali ◽  
MM Hafeez ◽  
A Malik

Aloe vera is a well-known medicinal plant used in many therapeutic purposes. Naturally it is composed of many useful compounds that have ability to use for treatment of many diseases. The active compounds reported in this plant are saponins, sugar, enzymes, vitamins, aloesin, aloeemodin, aloin, acemannan aloemannan, aloeride, methylchromones, flavonoids, naftoquinones, sterols, minerals, anthraquinones, amino acids, lignin and salicylic acid and other different compounds including fat-soluble and water-soluble vitamins, enzymes, minerals, simple/complex sugars, organic acid and phenolic compounds. In this study aloe vera is used for antibacterial and antifulgal activity against different strains of bacteria and pathogenic fungal strains. Ethanol extract of Aloe vera leaves and roots is applied on these bacterial and fungal strains in different concentrations (15, 20, 25, 30µl). Bacillus cereus, Bacillus subtitis, Bacillus megaterium, Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and some other bacterial strains are used for this study. Escherichia coli and Agrobacterium tumefacins shows zone of inhibition around 18mm which consider as good result. Bacillus subtitis and Bacillus megaterium also shows good result around 16mm. Proteus mirabilis and Pseudomonas aeruginosa shows minimum zone of inhibition which is around 11mm. among all used fungal strains (fuserium oxysporum, Candida albicans, Aspergillus fumigatus, Aspergillus niger) fuserium oxysporum and Aspergillus niger shows excellent results around 19mm both against root extract and leaves extract.


Microbiology ◽  
2021 ◽  
Vol 90 (3) ◽  
pp. 361-369
Author(s):  
Poornachandra Rao K ◽  
Hemanth Kumar N ◽  
Rakesh Somashekaraiah ◽  
M. Murali ◽  
Shobha J ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document