scholarly journals ENHANCEMENT OF THERAPEUTIC WINDOW OF METFORMIN HYDROCHLORIDE BY FABRICATION OF MICROSPHERES COMPRISING POLYMERIC INCULCATION WITH SEMI-SYNTHETIC AND SYNTHETIC POLYMERS BY IMPLEMENTATION OF BOX-BEHNKEN DESIGN

Author(s):  
MD AAMER QUAZI ◽  
NAZIA KHANAM

Objective: Innovative enhancement of therapeutic window of Metformin hydrochloride (MFH) and bioavailability through mucoadhesive microspheres by polymeric inculcation of hydroxypropyl methylcellulose K4M grade (HPMC K4M), hydroxypropyl methylcellulose K100M grade (HPMC K100M) and Kollidon SR grade (KS). Methods: Controlled release system was developed by incorporating semi-synthetic and synthetic polymers by modified solvent evaporation technique. Fabrication of mucoadhesive microspheres was designed by the implementation of experimental designs to obtain most optimum concentration of selected factors. The method was optimized by Box Behnken design (BBD) with selected factors as concentrations of semi-synthetic and synthetic polymer with stirring speed influence for the obtained responses that were mean particle size (Y1) entrapment efficiency of drug (Y2) and percent mucoadhesion (Y3). Microspheres were characterized for particle size, entrapment efficiency of drug, ex-vivo mucoadhesion study, in vitro study, Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) detection and H1 Nuclear magnetic resonance (NMR) quantification for optimized formulation. Results: Implementation of response surface method software for BBD yielded stable microspheres with mean particle size 274 µm, entrapment efficiency of drug 85.07% and percent mucoadhesion 67.03% for optimized formulation F5. Conclusion: Bridging of MFH with the highly innovative combination of semi-synthetic and synthetic polymers yielded stable, cost-effective microspheres with improved bioavailability with controlled-release effect as till date no literature is available that provide information with selected polymeric combination and analytical characterization.

Author(s):  
Y. SARAH SUJITHA ◽  
Y. INDIRA MUZIB

Objective: Quercetin is therapeutically hampered because of its poor solubility. The present investigation was aimed to prepare quercetin loaded nanosponges topical gel to enhance the solubility and efficacy of the drug. Methods: Quercetin nanosponges were prepared by emulsion solvent diffusion method. Developed nanosponges optimized by particle size, SEM, entrapment efficiency, FT-IR, DSC, P-XRD, In vitro studies. The optimized formulation of nanosponges was loaded into a topical gel and it was characterized by ex-vivo, in vivo Pharmacodynamic and kinetic studies. Results: The particle size and zeta potential of optimized nanosponges were found to be 188.3 nm and-0.1mV. Surface morphology was studied using SEM Analysis which showed tiny sponge-like structure and entrapment efficiency was found to be 96.5 %. In vitro drug release of optimized nanosponges was found to be 98.6% for 7hours. Optimized nanosponges entrapped gel was prepared by using carbopol 934 and hydroxypropyl methylcellulose as gelling agents. The prepared nanogels were homogenous and ex-vivo skin permeation studies of the optimized nanosponges gel was found to be 98.1% for 5 h, quercetin loaded nanosponges has shown higher skin permeation efficiency (18.4µg/cm2±2.1) compared to pure quercetin gel. The pharmacokinetic and pharmacodynamic studies showed that the quercetin loaded nanosponges has shown more effective when compared to marketed formulation. Conclusion: Quercetin loaded nanosponges gel has shown a significant increase in activity (p<0.05) compared to the marketed formulation (Voveran Emulgel).


2020 ◽  
Vol 14 (3) ◽  
pp. 210-224
Author(s):  
Gayatri Patel ◽  
Bindu K.N. Yadav

Background: The purpose of this study was to formulate, characterize and in-vitro cytotoxicity of 5-Fluorouracil loaded controlled release nanoparticles for the treatment of skin cancer. The patents on nanoparticles (US8414926B1), (US61654404A), (WO2007150075A3) etc. helped in the selection polymers and method for the preparation of nanoparticles. Methods: In the present study nanoparticles were prepared by simple ionic gelation method using various concentrations of chitosan and sodium tripolyphosphate (TPP). Several process and formulation parameters were screened and optimized using 25-2 fractional factorial design. The prepared nanoparticles were evaluated for particle size, shape, charge, entrapment efficiency, crosslinking mechanism and drug release study. Results: The optimized 5-Fluorouracil loaded nanoparticle were found with particle size of of 320±2.1 nm, entrapment efficiency of 85.12%± 1.1% and Zeta potential of 29mv±1mv. Scanning electron microscopy and dynamic light scattering technique revealed spherical particles with uniform size. The invitro release profile showed controlled release up to 24 hr. Further study was carried using A375 basal cell carcinoma cell-line to elucidate the mechanism of its cytotoxicity by MTT assay. Conclusion: These results demonstrate that the possibility of delivering 5-Fluorouracil to skin with enhanced encapsulation efficiency indicating effectiveness of the formulation for treatment of basal cell carcinoma type of skin cancer.


Author(s):  
Anjali Pandya ◽  
Rajani Athawale ◽  
Durga Puro ◽  
Geeta Bhagwat

Background: The research work involves development of PLGA biodegradable microspheres loaded with dexamethasome for intraocular delivery. Objective: To design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Method: Present formulation involves the development of long acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D, L- lactide-co-glycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high pressure homogenization was used to facilitate formation of microspheres. Results: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology was observed using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and transretinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion: Considering the dire need for prolonged therapeutic effect in diseases of the posterior eye, an intravitreal long acting formulation was designed. Use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. Outcome from present research shows that developed microspheres would provide a long acting drug profile and reduce the frequency of administration thereby improving patient compliance.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 677
Author(s):  
Sara A. Abosabaa ◽  
Aliaa N. ElMeshad ◽  
Mona G. Arafa

The objective of the present research is to propose chitosan as a nanocarrier for caffeine—a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Md Rizwanullah ◽  
Khalid Umar Fakhri ◽  
Mohd Moshahid Alam Rizvi ◽  
...  

In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sonia S. Pandey ◽  
Farhinbanu I. Shaikh ◽  
Arti R. Gupta ◽  
Rutvi J. Vaidya

Background: Despite significant biological effects, the clinical use of chrysin has been restricted because of its poor oral bioavailability. Objective: The purpose of the present research was to investigate the targeting potential of Mannose decorated chrysin (5,7- dihydroxyflavone) loaded solid lipid nanocarrier (MC-SLNs) for gastric cancer. Methods: The Chrysin loaded SLNs (C-SLNs) were developed optimized, characterized and further mannosylated. The C-SLNs were developed with high shear homogenizer, optimized with 32 full factorial designs and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) and evaluated for particle size/polydispersity index, zeta-potential, entrapment efficiency, % release and haemolytic toxicity. The ex-vivo cytotoxicity study was performed on gastric cancer (ACG) and normal cell lines. Results: DSC and XRD data predict the chrysin encapsulation in lipid core and FTIR results confirm the mannosylation of C-SLNs. The optimized C-SLNs exhibited a narrow size distribution with a particle size of 285.65 nm. The % Entrapment Efficiency (%EE) and % controlled release were found to be 74.43% and 64.83%. Once C-SLNs were coated with mannose, profound change was observed in dependent variable - increase in the particle size of MC-SLNs (307.1 nm) was observed with 62.87% release and 70.8% entrapment efficiency. Further, the in vitro studies depicted MC- SLNs to be least hemolytic than pure chrysin and C-SLNs. MC-SLNs were most cytotoxic and were preferably taken up ACG tumor cells as evaluated against C-SLNs. Conclusion: These data suggested that the MC-SLNs demonstrated better biocompatibility and targeting efficiency to treat the gastric cancer.


Author(s):  
Seema Kohli ◽  
Abhisek Pal ◽  
Suchit Jain

Objective: The purpose of this research work was to develop and evaluate microspheres appropriate for controlled release of zidovudine (AZT).Methods: The AZT loaded polylactide-co-glycolide (PLGA) microspheres were prepared by W/O/O double emulsion solvent diffusion method. Compatibility of drug and polymer was studied by Fourier-transform infrared spectroscopy (FTIR). The influence of formulation factors (drug: polymer ratio, stirring speed, the concentration of surfactant) on particle size encapsulation efficiency and in vitro release characteristics of the microspheres was investigated. Release kinetics was studied and stability study was performed as per ICH guidelines.Results: Scanning electron microscopy (SEM) images show good reproducibility of microspheres from different batches. The average particle size was in the range of 216-306 μm. The drug-loaded microspheres showed 74.42±5.08% entrapment efficiency. The cumulative percentage released in phosphate Buffer solution (PBS) buffer was found to be 55.32±5.89 to 74.42±5.08 %. The highest regressions (0.981) were obtained for zero order kinetics followed by Higuchi (0.968) and first order (0.803).Conclusion: Microsphere prepared by double emulsion solvent diffusion method was investigated and the results revealed that 216-306 μm microsphere was successfully encapsulated in a polymer. FT-IR analysis, entrapment efficiency and SEM Studies revealed the good reproducibility from batch to batch. The microspheres were of an appropriate size and suitable for oral administration. Thus the current investigation show promising results of PLGA microspheres as a matrix for drug delivery and merit for In vivo studies for scale up the technology.


Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


Author(s):  
Haithem N Abed ◽  
Ahmed A. Hussein

Abstract The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of  92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal permeation study using the non-everted sac model shows four folds increment in the permeation of DE-NLCs compared to dabigatran etexilate suspension (DE-S).


Sign in / Sign up

Export Citation Format

Share Document