scholarly journals PHYTOCHEMICAL INVESTIGATION, GC-MS PROFILE AND ANTIMICROBIAL ACTIVITY OF A MEDICINAL PLANT RUTA GRAVEOLENS L. FROM ETHIOPIA

Author(s):  
Henok Gulilat Azalework ◽  
Sahabjada . ◽  
Asif Jafri ◽  
Md Arshad ◽  
Tabarak Malik

Objective: This study was designed to screen the phytochemicals present in various solvents extracts of Ruta graveolens (Rue) and furthermore to investigate their antimicrobial activity.Methods: The leaves, stems and seeds of Rue were extracted using four different solvents viz. ethanolic, methanolic, chloroform, and aqueous of varying polarity. The phytochemical screening was carried out qualitatively and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis was performed to identify major phytoconstituents present in the methanolic leaf extract. The antimicrobial effect of extracts was evaluated against six microbial strains namely Bacillus subtillis, Escherichia coli, Proteus vulgaris, Candida albicans, Candida tropicalis and Micrococcus luteus with disc diffusion method.Results: Phytochemical analysis revealed the presence of various secondary metabolites such as flavonoids, alkaloids, terpenoids, saponins and carotenoid. The methanolic leaf extract showed the presence of both tannin and phenolic contents in the higher amount, whereas aqueous extract displayed in the least amount. GC-MS analysis of methanolic leaf extract revealed the presence of approximately 26 phytochemical constituents. The antimicrobial assay revealed that B. subtilis showed a high zone of inhibition (20 mm) at 200 mg/ml of methanolic extract. However, E. coli and C. tropicalis did not show any zone of inhibition against each solvent extract.Conclusion: In conclusion, secondary metabolites present in the extracts have biological activities which warrant further to evaluate in vivo pharmacological studies.

Food Research ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 482-487 ◽  
Author(s):  
S.A. Raza ◽  
A.R. Chaudhary ◽  
M.W. Mumtaz ◽  
S. Bashir

The current study was conducted to evaluate the antioxidant, Fe-chelating and lipase inhibition activities of hydroethanolic leaf extracts of Conocarpus erectus. The proton magnetic resonance spectroscopy (1H-NMR) was used to identify the major types of primary and secondary metabolites in extract. The 60% ethanolic extract was found to be the most effective fraction regarding antioxidant, Fe chelating and lipase inhibitory properties. The 60% ethanolic leaf extract exhibited total antioxidant power of 223.0±3.27 mg ASE/g PE, β-carotene bleaching inhibition of 81.39±2.11%, Fe-chelating of 68.21±1.17% and pancreatic lipase inhibition of 50.60±1.47%, respectively. The 1H-NMR -based prediction of metabolites provided the information for presence of polyphenolic secondary metabolites and organic acids which might be responsible for the biological activities of extract. These findings of this work may be extended for metabolite characterization, in vivo trials and toxicity determination to get benefits for functional food development with antioxidative and antiobesity attributes.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Author(s):  
Dhanapaul Vinoth Kumar

The present study was designed to evaluate the phytochemical analysis and antibacterial activity of Swietenia mahagoni leaf extract. The leaf extract was subjected to a variety of phytochemical analysis. The qualitative phytochemical tests exhibited the presence of common phytocompounds like alkaloids, tannins, saponins, phlobatannins, flavanoids, terpenoids and volatile oils as major active constituents. The plant (Swietenia mahagoni) leaf has valuable medicinal uses, hence petroleum ether (18.2g) was found to be a good solvent for the phytochemical and antibacterial study. Similarly, the Methanolic leaf extract of Swietenia mahagoni has highest zone of inhibition on Bacillus subtilis.


Author(s):  
PAVITHRA S ◽  
SEKAR T

Objective: In the present study is investigated of phytochemicals and antioxidant activities of the leaf extracts from Meliosma simplicifolia (L.). Methods: The seaweed sample was subjected to extraction with solvents of different polarities (hot water, methanol, acetone, chloroform, and petroleum ether) and screened for phytochemicals according to standard methods. The ability of the plant extract to act as hydrogen/electrons donor or scavenger of radicals was determined by in vitro antioxidant assays using 2,2-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, reducing power assay, and superoxide radical (O2•) scavenging activity. The ICPMS and GC-MS analysis of the methanol leaf extract of M. simplicifolia was revealed the presence of antibacterial. Results: Phytochemical analysis revealed the presence of Preliminary metabolites Quantitative studies of estimated phenol, flavonoid and tannin, as for the methanol extract of stem showed the highest content of phenolic compounds (40.71±0.94 GAE mg/100). Antioxidant activities were concluded the estimation M. simplicifolia leaf for as followed the studies. In leaf the highest DPPH scavenging activity (132.3 μg/ml), ICP-MS analysis of the leaf extract showed the presence minerals such as Mg, Fe, Cu, Na, and Zn in excess. The leaf extract of the plant was also tested for its antibacterial activity and results confirmed that it has potential activity. Conclusion: The preliminary studies in the methanol extract of the leaf of M. simplicifolia are suggestive of the antibacterial potentials of the methanol extract of leaves of M. simplicifolia.


2017 ◽  
Vol 9 (4) ◽  
pp. 576
Author(s):  
Prashith Kekuda TR ◽  
Dunkana Negussa Kenie ◽  
Chetan DM ◽  
Raghavendra L Hallur

<p><strong>Objectives</strong>: The present study was conducted to evaluate antimicrobial, insecticidal and radical scavenging activity of leaf extract of <em>Hydnocarpus pentandra</em> (Buch.-Ham.) Oken belonging to the family Achariaceae.</p><p><strong>Methods</strong>: Extraction process of shade dried and powdered leaf was carried out by maceration technique. Extract was screened for phytochemicals by standard tests. Antibacterial and antifungal activity of leaf extract was determined by Agar well diffusion and Poisoned food technique respectively. Antiradical activity of leaf extract was evaluated by two in vitro assays namely 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis 3-ethylbenzothiazoline 6-sulfonate (ABTS) free radical scavenging assays. Insecticidal activity of leaf extract was determined against II instar and IV instar larvae of <em>Aedes aegypti</em>.</p><p><strong>Results</strong>: Preliminary phytochemical analysis showed the presence of alkaloids, flavonoids, tannins, saponins, glycosides, triterpenes and steroids in the leaf extract. Leaf extract exhibited marked inhibitory activity against Gram positive bacteria when compared to Gram negative bacteria. <em>Bacillus cereus</em> (zone of inhibition 1.86±0.05cm) and <em>Escherichia coli</em> (zone of inhibition 1.06±0.05cm) were inhibited to highest and least extent respectively. Extract was effective in inhibiting mycelial growth of seed-borne fungi. Among fungi, the susceptibility to extract was in the order: <em>Curvularia</em> sp. (53.64% inhibition) &gt; <em>Fusarium</em> sp. (45.81% inhibition) &gt; <em>Alternaria</em> sp. (35.08% inhibition). The extract exhibited concentration dependent larvicidal activity with marked activity being observed against II instar larvae (LC<sub>50</sub> value 0.79mg/ml) when compared to IV instar larvae (LC<sub>50</sub> value 1.37mg/ml). Leaf extract scavenged DPPH and ABTS radicals dose dependently with an IC<sub>50</sub> value of 13.91µg/ml and 6.03µg/ml respectively.</p><p><strong>Conclusions</strong>: The plant is shown to be an important source of bioactive agents. The observed bioactivities could be attributed to the phytochemicals present in the leaf extract. Further studies on characterization and bioactivity determination of isolated components from leaf extract are to be carried out.</p>


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 129
Author(s):  
Dario Matulja ◽  
Maria Kolympadi Markovic ◽  
Gabriela Ambrožić ◽  
Sylvain Laclef ◽  
Sandra Kraljević Pavelić ◽  
...  

Gorgonian corals, which belong to the genus Eunicella, are known as natural sources of diverse compounds with unique structural characteristics and interesting bioactivities both in vitro and in vivo. This review is focused primarily on the secondary metabolites isolated from various Eunicella species. The chemical structures of 64 compounds were divided into three main groups and comprehensively presented: a) terpenoids, b) sterols, and c) alkaloids and nucleosides. The observed biological activities of depicted metabolites with an impact on cytotoxic, anti-inflammatory, and antimicrobial activities were reviewed. The most promising biological activities of certain metabolites point to potential candidates for further development in pharmaceutical, cosmetic, and other industries, and are highlighted. Total synthesis or the synthetic approaches towards the desired skeletons or natural products are also summarized.


Author(s):  
Deep Chhavi Anand ◽  
Rishikesh Meena ◽  
Vidya Patni

Objective: The aim of the present study was to develop a callus induction protocol and comparative study of therapeutic phytochemicals present in in vivo leaf and in vitro callus extracts through Gas Chromatography-Mass Spectrometry analysis.Methods: Murashige and Skoog media was used as culture media for callus induction. In vitro callus induction protocol was developed by studying the effects of various plant growth regulators like auxin, 2, 4-D (2,4-dichlorophenoxyacetic acid), NAA (naphthalic acetic acid), alone and in combination with cytokinin BAP (benzyl aminopurine), on leaf and stem explants. The GC-MS analysis of Ampelocissus latifolia was carried out on Shimadzu QP-2010 plus with thermal desorption system TD 20 to study the phytochemical profile.Results: In vitro callus induction protocol was developed for the plant and callusing was done from leaf and stem explants of Ampelocissus latifolia. The best result for callus induction was obtained using leaf explant, and callus production were maximum in Murashige and Skoog medium fortified with BAP (0.5 mg/l) and NAA (1.0 mg/l). Major compounds identified in the GC-MS analysis were Campesterol, Stigmasterol, Beta-Sitosterol, Docosanol, Dodecanoic acid, etc., in in vitro extract and Beta Sitosterol, Tocopherol, Squalene, Bergamot oil, Margarinic acid, Hexadecanoic acid, etc., in in vivo extract. The different active phytochemicals identified have been found to possess a wide range of biological activities, thus this analysis forms a basis for the biological characterization and importance of the compounds identified for human benefits.Conclusion: This is the first report on callus induction in Ampelocissus latifolia. From the results obtained through the in vitro callus induction and its comparative GCMS analysis with in vivo extract, it is revealed that Ampelocissus latifolia contains various bioactive compounds that are of importance for phytopharmaceutical uses. The GCMS analysis revealed that the amount of Beta-sitosterol and 5-Hydroxymethylfurfural (HMF) was very high in in vitro extract as compared to in vivo extract.


2018 ◽  
Vol 21 ◽  
pp. 376-385 ◽  
Author(s):  
Vanessa Cristina Meira De Amorim ◽  
Markley Silva Oliveira Júnior ◽  
Eduardo Muniz Santana Bastos ◽  
Victor Diogenes Amaral Da Silva ◽  
Silvia Lima Costa

Purpose: Flavonoids are a group of secondary metabolites of the polyphenols class present in several plant species. Among them, the biflavonoid agathisflavone is of interest since it bears several biological effects that include: antiviral, antitumoral, antiprotozoal and neurogenic actions. In this sense, this study aims to use the important tool of scientific prospecting to assess the level of research development concerning the flavonoid agathisflavone. Methods: The experimental design was carried out through strategic reach with keywords on the PubMed (National Center for Biotechnology Information - NCBI) and Science Direct platforms. The articles were compiled and exported to Microsoft Office Excel 2007, where they were analyzed, stored and distributed in charts organized as to different countries, year of publication of scientific articles and journals RESULTS: The prospective research resulted in the identification of 81 scientific productions, published in several journals, submitted by different countries, in several areas of medical domain and in different years of publication over the last 50 years (1965 - 2018). It was also possible to investigate the advances in the study of agathisflavone for the development of new therapeutics. Conclusion: Although agathisflavone has been known in the literature since at least 1969, only 23 of the eligible articles found evaluated its possible therapeutic effects. The demonstrated biological activities of agathisflavone range from antiprotozoal to neurogenesis and neuroprotection, however, the molecule needs to be better studied at the in vivo and human level.


Sign in / Sign up

Export Citation Format

Share Document