Gene signatures with therapeutic value: emerging perspective for personalized immunotherapy in renal cancer

Immunotherapy ◽  
2021 ◽  
Author(s):  
Pankaj Ahluwalia ◽  
Ashis K Mondal ◽  
Nikhil S Sahajpal ◽  
Mumtaz V Rojiani ◽  
Ravindra Kolhe

Renal cancer is one of the deadliest urogenital diseases. In recent years, the advent of immunotherapy has led to significant improvement in the management of patients with renal cancer. Although cancer immunotherapy and its combinations had benefited numerous patients, several challenges need to be addressed. Apart from the high costs of treatment, the lack of predictive biomarkers and toxic side-effects have impeded its wider applicability. To address these issues, new biomarkers are required to predict responsiveness and design personalized treatment strategies. Recent advances in the field of single-cell sequencing and multi-dimensional spatial transcriptomics have identified clinically relevant subtypes of renal cancer. Furthermore, there is emerging potential for gene signatures based on immune cells, non-coding RNAs, and pathways such as metabolism and RNA modification. In this review article, we have discussed recent progress in the identification of gene signatures with predictive and prognostic potential in renal cancer.

2020 ◽  
Vol 21 (18) ◽  
pp. 6975
Author(s):  
Azadeh Amirnasr ◽  
Stefan Sleijfer ◽  
Erik A. C. Wiemer

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy–Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chaofeng Chen ◽  
Qingxing Chen ◽  
Kuan Cheng ◽  
Tian Zou ◽  
Yang Pang ◽  
...  

Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant impact on human health and substantial costs. Currently, there is a lack of accurate biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are nano-sized biovesicles released by nearly all types of cells. Since the AF would be linked to the changes of the atrial cells and their microenvironment, and the AF would strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, which makes them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously, the exo-ncRNAs have been found to play an important role in the mechanisms of the AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs in the AF is being actively investigated, the evidence is still limited. Furthermore, there is a lack of consensus regarding the most appropriate approach for exosome isolation and characterization. In this article, we reviewed the new methodologies available for exosomes biogenesis, isolation, and characterization, and then discussed the mechanism of the AF and various levels and types of exosomes relevant to the AF, with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment of the mechanism-based AF.


2020 ◽  
Vol 13 (3) ◽  
pp. 192-205 ◽  
Author(s):  
Fanghong Lei ◽  
Tongda Lei ◽  
Yun Huang ◽  
Mingxiu Yang ◽  
Mingchu Liao ◽  
...  

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2878
Author(s):  
Claudia Maria Hattinger ◽  
Maria Pia Patrizio ◽  
Leonardo Fantoni ◽  
Chiara Casotti ◽  
Chiara Riganti ◽  
...  

High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.


2021 ◽  
Author(s):  
Otília Menyhárt ◽  
János Tibor Fekete ◽  
Balázs Győrffy

Abstract Despite advances in molecular characterization of glioblastoma multiforme (GBM), only a handful of predictive biomarkers exist with limited clinical relevance. We aimed to identify differentially expressed genes in tumor samples collected at surgery associated with response to subsequent treatment, including temozolomide (TMZ) and nitrosoureas. Gene expression was collected from multiple independent datasets. Patients were categorized as responders/nonresponders based on their survival status at 16 months post-surgery. For each gene, the expression was compared between responders and nonresponders with a Mann-Whitney U test and receiver operating characteristic. The package "roc" was used to calculate the area under the curve (AUC). The integrated database comprises 454 GBM patients from three independent datasets and 10,103 genes. The highest proportion of responders (68%) were among patients treated with TMZ combined with nitrosoureas, where FCGR2B upregulation provided the strongest predictive value (AUC=0.72, p < 0.001). Elevated expression of CSTA and MRPS17 was associated with a lack of response to multiple treatment strategies. DLL3 upregulation was present in subsequent responders to any treatment combination containing TMZ. Three genes (PLSCR1, MX1, and MDM2) upregulated both in the younger cohort and in patients expressing low MGMT delineate a subset of patients with worse prognosis within a population generally associated with a favorable outcome. The identified transcriptomic changes provide biomarkers of responsiveness, offer avenues for preclinical studies, and may enhance future GBM patient stratifications. The described methodology provides a reliable pipeline for the initial testing of potential biomarker candidates for future validation studies.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 607
Author(s):  
Alice Indini ◽  
Francesco Grossi ◽  
Mario Mandalà ◽  
Daniela Taverna ◽  
Valentina Audrito

Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2274
Author(s):  
Filippo Pelizzaro ◽  
Romilda Cardin ◽  
Barbara Penzo ◽  
Elisa Pinto ◽  
Alessandro Vitale ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1757
Author(s):  
Ioanna Gazouli ◽  
Anastasios Kyriazoglou ◽  
Ioannis Kotsantis ◽  
Maria Anastasiou ◽  
Anastasios Pantazopoulos ◽  
...  

Osteosarcoma is the most frequent primary bone cancer, mainly affecting those of young ages. Although surgery combined with cytotoxic chemotherapy has significantly increased the chances of cure, recurrent and refractory disease still impose a tough therapeutic challenge. We performed a systematic literature review of the available clinical evidence, regarding treatment of recurrent and/or refractory osteosarcoma over the last two decades. Among the 72 eligible studies, there were 56 prospective clinical trials, primarily multicentric, single arm, phase I or II and non-randomized. Evaluated treatment strategies included cytotoxic chemotherapy, tyrosine kinase and mTOR inhibitors and other targeted agents, as well as immunotherapy and combinatorial approaches. Unfortunately, most treatments have failed to induce objective responses, albeit some of them may sustain disease control. No driver mutations have been recognized, to serve as effective treatment targets, and predictive biomarkers of potential treatment effectiveness are lacking. Hopefully, ongoing and future clinical and preclinical research will unlock the underlying biologic mechanisms of recurrent and refractory osteosarcoma, expanding the therapeutic choices available to pre-treated osteosarcoma patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1823
Author(s):  
Lealem Gedefaw ◽  
Sami Ullah ◽  
Thomas M. H. Lee ◽  
Shea Ping Yip ◽  
Chien-Ling Huang

Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yujie Zhang ◽  
Yanyan Wang ◽  
Liwei Ying ◽  
Sifeng Tao ◽  
Mingmin Shi ◽  
...  

Osteosarcoma is the most common primary bone malignancy, typically occurring in childhood or adolescence. Unfortunately, the clinical outcomes of patients with osteosarcoma are usually poor because of the aggressive nature of this disease and few treatment advances in the past four decades. N6-methyladenosine (m6A) is one of the most extensive forms of RNA modification in eukaryotes found both in coding and non-coding RNAs. Accumulating evidence suggests that m6A-related factors are dysregulated in multiple osteosarcoma processes. In this review, we highlight m6A modification implicated in osteosarcoma, describing its pathophysiological role and molecular mechanism, as well as future research trends and potential clinical application in osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document