scholarly journals Effect of diamond-like carbon doped with chromium on cell differentiation, immune activation and apoptosis

2020 ◽  
Vol 40 ◽  
pp. 276-302
Author(s):  
M Travnickova ◽  
◽  
M Vandrovcova ◽  
E Filova ◽  
M Steinerova ◽  
...  

Diamond-like carbon (DLC) is a biocompatible material that has many potential biomedical applications, including in orthopaedics. DLC layers doped with Cr at atomic percent (at.%) of 0, 0.9, 1.8, 7.3, and 7.7 at.% were evaluated with reference to their osteoinductivity with human bone marrow mesenchymal stromal cells (hMSCs), immune activation potential with RAW 264.7 macrophage-like cells, and their effect on apoptosis in Saos-2 human osteoblast-like cells and neonatal human dermal fibroblasts (NHDFs). At mRNA level, hMSCs on DLC doped with 0.9 and 7.7 at.% of Cr reached higher maximum values of both RUNX2 and alkaline phosphatase. An earlier onset of mRNA production of type I collagen and osteocalcin was also observed on these samples; they also supported the production of both type I collagen and osteocalcin. RAW 264.7 macrophages were screened using a RayBio™ Human Cytokine Array for cytokine production. 10 cytokines were at a concentration more than 2 × as high as the concentration of a positive control, but the values for the DLC samples were only moderately higher than the values on glass. NHDF cells, but not Saos-2 cells, had a higher expression of pro-apoptotic markers Bax and Bim and a lower expression of anti-apoptotic factor BCL-XL in proportion to the Cr content. Increased apoptosis was also proven by annexin V staining. These results show that a Cr-doped DLC layer with a lower Cr content can act as an osteoinductive material with relatively low immunogenicity, but that a higher Cr content can induce cell apoptosis.

2020 ◽  
Vol 21 (22) ◽  
pp. 8693
Author(s):  
Young Eun Choi ◽  
Min Ji Song ◽  
Mari Hara ◽  
Kyoko Imanaka-Yoshida ◽  
Dong Hun Lee ◽  
...  

Tenascin C (TNC) is an element of the extracellular matrix (ECM) of various tissues, including the skin, and is involved in modulating ECM integrity and cell physiology. Although skin aging is apparently associated with changes in the ECM, little is known about the role of TNC in skin aging. In this study, we found that the Tnc mRNA level was significantly reduced in the skin tissues of aged mice compared with young mice, consistent with reduced TNC protein expression in aged human skin. TNC-large (TNC-L; 330-kDa) and -small (TNC-S; 240-kDa) polypeptides were observed in conditional media from primary dermal fibroblasts. Both recombinant TNC polypeptides, corresponding to TNC-L and TNC-S, increased the expression of type I collagen and reduced the expression of matrix metalloproteinase-1 in fibroblasts. Treatment of fibroblasts with a recombinant TNC polypeptide, corresponding to TNC-L, induced phosphorylation of SMAD2 and SMAD3. TNC increased the level of transforming growth factor-β1 (TGF-β1) mRNA and upregulated the expression of type I collagen by activating the TGF-β signaling pathway. In addition, TNC also promoted the expression of type I collagen in fibroblasts embedded in a three-dimensional collagen matrix. Our findings suggest that TNC contributes to the integrity of ECM in young skin and to prevention of skin aging.


2021 ◽  
Vol 23 (1) ◽  
pp. 367
Author(s):  
Monica L. Brown Lobbins ◽  
Andrzej T. Slominski ◽  
Karen A. Hasty ◽  
Sicheng Zhang ◽  
Duane D. Miller ◽  
...  

We previously demonstrated that the non-calcemic pregnacalciferol (pD) analog 17,20S (OH)2pD suppressed TGF-β1-induced type I collagen production in cultured normal human dermal fibroblasts. In the present studies, we examined fibroblasts cultured from the lesional skin of patients with systemic sclerosis (scleroderma (SSc)) and assessed the effects of 17,20S(OH)2pD on fibrosis-related mediators. Dermal fibroblast lines were established from skin biopsies from patients with SSc and healthy controls. Fibroblasts were cultured with either 17,20S(OH)2pD or 1,25(OH)2D3 (positive control) with/without TGF-β1 stimulation and extracted for protein and/or mRNA for collagen synthesis and mediators of fibrosis (MMP-1, TIMP-1, PAI-1, BMP-7, PGES, GLI1, and GLI2). 1 7,20S(OH)2pD (similar to 1,25(OH)2D3) significantly suppressed net total collagen production in TGF-β1-stimulated normal donor fibroblast cultures and in cultures of SSc dermal fibroblasts. 17,20S(OH)2pD (similar to 1,25(OH)2D3) also increased MMP-1, BMP-7, and PGES and decreased TIMP-1 and PAI1 expression in SSc fibroblasts. Although 17,20S(OH)2pD had no effect on Gli1 or Gli2 in SSc fibroblasts, it increased Gli2 expression when cultured with TGF-β1 in normal fibroblasts. These studies demonstrated that 17,20S(OH)2pD modulates mediators of fibrosis to favor the reduction of fibrosis and may offer new noncalcemic secosteroidal therapeutic approaches for treating SSc and fibrosis.


Author(s):  
Young Eun Choi ◽  
Min Ji Song ◽  
Mari Hara ◽  
Kyoko Imanaka-Yoshida ◽  
Dong Hun Lee ◽  
...  

Tenascin C (TNC) is an element of the extracellular matrix (ECM) of various tissues, including the skin, and is involved in modulating ECM integrity and cell physiology. Although skin aging is apparently associated with changes in the ECM, little is known about the role of TNC in skin aging. Here we found that Tnc mRNA level was significantly reduced in the skin tissues of aged mice compared with young mice, consistent with reduced TNC protein expression in aged human skin. TNC-large (TNC-L; 330-kDa) and -small (TNC-S; 240-kDa) polypeptides were observed in conditional media from primary dermal fibroblasts. Both recombinant TNC polypeptides, corresponding to TNC-L and TNC-S, increased the expression of type I collagen and reduced the expression of matrix metalloproteinase-1 in fibroblasts. Treatment of fibroblasts with a recombinant TNC polypeptide, corresponding to TNC-L, induced phosphorylation of SMAD2 and SMAD3. TNC increased the level of TGF-β1 mRNA and upregulated the expression of type I collagen by activating the TGF-β signaling pathway. In addition, TNC also promoted the expression of type I collagen in fibroblasts embedded in a three-dimensional collagen matrix. Our findings suggest that TNC contributes to the integrity of ECM in young skin and to prevention of skin aging.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 267
Author(s):  
Ik Jun Moon ◽  
Hanju Yoo ◽  
Seung Hwan Paik ◽  
Hak Tae Kim ◽  
Su Yeon Kim ◽  
...  

Extrinsic aging of the skin caused by ultraviolet (UV) light or particulate matter is often manifested by hyperpigmentation due to increased melanogenesis in senescent skin. Ursodeoxycholic acid (UDCA), which has been commonly used as a health remedy for liver diseases, is known to possess antioxidant properties. This study was done to investigate whether UDCA inhibits cellular aging processes in the cells constituting human skin and it reduces melanin synthesis. ROS, intracellular signals, IL-1α, IL-8, TNF-α, cyclooxygenase (COX)-2, type I collagen, and matrix metalloproteinases (MMPs) levels were measured in human dermal fibroblasts treated with or without UDCA after UV exposure. Melanin levels and mechanistic pathways for melanogenesis were investigated. UDCA decreased ROS, senescence-associated secretory phenotype (SASP), and proinflammatory cytokines induced by UV treatment. UDCA reduced melanogenesis in normal human melanocytes cocultured with skin constituent cells. Our results suggest that UDCA could be a comprehensive agent for the treatment of environmental aging-associated hyperpigmentation disorders.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


2016 ◽  
Vol 81 (2) ◽  
pp. 376-379 ◽  
Author(s):  
Eriko Uehara ◽  
Hideki Hokazono ◽  
Takako Sasaki ◽  
Hidekatsu Yoshioka ◽  
Noritaka Matsuo

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 350 ◽  
Author(s):  
Kegan McColgan-Bannon ◽  
Sarah Upson ◽  
Piergiorgio Gentile ◽  
Muhammad Tausif ◽  
Stephen Russell ◽  
...  

The force-spinning process parameters (i.e., spin speed, spinneret-collector distance, and polymer concentration), optimised and characterised in previous work by this group, allowed the rapid fabrication of large quantities of high surface area poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) polymeric fibre membranes. This paper examined the potential application for force-spun PHBV fibres functionalised with type I collagen for tissue regeneration applications. PHBV fibre scaffolds provide a biologically suitable substrate to guide the regeneration of dermal tissues, however, have poor cellular adhesion properties. The grafting of collagen type-I to PHBV fibres demonstrated improved cell adhesion and growth in Neo-NHDF (neonatal human dermal fibroblasts) fibroblasts. The examination of fibre morphology, thermal properties, collagen content, and degradability was used to contrast the physicochemical properties of the PHBV and PHBV-Collagen fibres. Biodegradation models using phosphate buffered saline determined there was no appreciable change in mass over the course of 6 weeks; a Sirius Red assay was performed on degraded samples, showing no change in the quantity of collagen. Cell metabolism studies showed an increase in cell metabolism on conjugated samples after three and 7 days. In addition, in vitro cytocompatibility studies demonstrated superior cell activity and adhesion on conjugated samples over 7 days.


Sign in / Sign up

Export Citation Format

Share Document