scholarly journals Location Based Fake News Detection using Machine Learning

Author(s):  
Prof. Rohit Nikam

Now a days lots of crime news incremented. In this system we can easy find which type of crime happened in particular city by using pin code. The easy access and exponential growth of the information available on social media network has made it detect to news or information fake or not. The easy dissemination of shared information has added to exponential growth of its falsification. On social media spreading lots of fake news. Thus it has become research challenge to automatically check detected news or information fake or real. Machine learning plays important role to classify the information in different categories. This paper reviews finding different types of crime news in particular city and detected news fake or real. One more feature is predict the future of crimes.

Social media plays a major role in several things in our life. Social media helps all of us to find some important news with low price. It also provides easy access in less time. But sometimes social media gives a chance for the fast-spreading of fake news. So there is a possibility that less quality news with false information is spread through the social media. This shows a negative impact on the number of people. Sometimes it may impact society also. So, detection of fake news has vast importance. Machine learning algorithms play a vital role in fake news detection; Especially NLP (Natural Language Processing) algorithms are very useful for detecting the fake news. In this paper, we employed machine learning classifiers SVM, K-Nearest Neighbors, Decision tree, Random forest. By using these classifiers we successfully build a model to detect fake news from the given dataset. Python language was used for experiments.


Author(s):  
V.T Priyanga ◽  
J.P Sanjanasri ◽  
Vijay Krishna Menon ◽  
E.A Gopalakrishnan ◽  
K.P Soman

The widespread use of social media like Facebook, Twitter, Whatsapp, etc. has changed the way News is created and published; accessing news has become easy and inexpensive. However, the scale of usage and inability to moderate the content has made social media, a breeding ground for the circulation of fake news. Fake news is deliberately created either to increase the readership or disrupt the order in the society for political and commercial benefits. It is of paramount importance to identify and filter out fake news especially in democratic societies. Most existing methods for detecting fake news involve traditional supervised machine learning which has been quite ineffective. In this paper, we are analyzing word embedding features that can tell apart fake news from true news. We use the LIAR and ISOT data set. We churn out highly correlated news data from the entire data set by using cosine similarity and other such metrices, in order to distinguish their domains based on central topics. We then employ auto-encoders to detect and differentiate between true and fake news while also exploring their separability through network analysis.


Author(s):  
Giandomenico Di Domenico ◽  
Annamaria Tuan ◽  
Marco Visentin

AbstractIn the wake of the COVID-19 pandemic, unprecedent amounts of fake news and hoax spread on social media. In particular, conspiracy theories argued on the effect of specific new technologies like 5G and misinformation tarnished the reputation of brands like Huawei. Language plays a crucial role in understanding the motivational determinants of social media users in sharing misinformation, as people extract meaning from information based on their discursive resources and their skillset. In this paper, we analyze textual and non-textual cues from a panel of 4923 tweets containing the hashtags #5G and #Huawei during the first week of May 2020, when several countries were still adopting lockdown measures, to determine whether or not a tweet is retweeted and, if so, how much it is retweeted. Overall, through traditional logistic regression and machine learning, we found different effects of the textual and non-textual cues on the retweeting of a tweet and on its ability to accumulate retweets. In particular, the presence of misinformation plays an interesting role in spreading the tweet on the network. More importantly, the relative influence of the cues suggests that Twitter users actually read a tweet but not necessarily they understand or critically evaluate it before deciding to share it on the social media platform.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 556
Author(s):  
Thaer Thaher ◽  
Mahmoud Saheb ◽  
Hamza Turabieh ◽  
Hamouda Chantar

Fake or false information on social media platforms is a significant challenge that leads to deliberately misleading users due to the inclusion of rumors, propaganda, or deceptive information about a person, organization, or service. Twitter is one of the most widely used social media platforms, especially in the Arab region, where the number of users is steadily increasing, accompanied by an increase in the rate of fake news. This drew the attention of researchers to provide a safe online environment free of misleading information. This paper aims to propose a smart classification model for the early detection of fake news in Arabic tweets utilizing Natural Language Processing (NLP) techniques, Machine Learning (ML) models, and Harris Hawks Optimizer (HHO) as a wrapper-based feature selection approach. Arabic Twitter corpus composed of 1862 previously annotated tweets was utilized by this research to assess the efficiency of the proposed model. The Bag of Words (BoW) model is utilized using different term-weighting schemes for feature extraction. Eight well-known learning algorithms are investigated with varying combinations of features, including user-profile, content-based, and words-features. Reported results showed that the Logistic Regression (LR) with Term Frequency-Inverse Document Frequency (TF-IDF) model scores the best rank. Moreover, feature selection based on the binary HHO algorithm plays a vital role in reducing dimensionality, thereby enhancing the learning model’s performance for fake news detection. Interestingly, the proposed BHHO-LR model can yield a better enhancement of 5% compared with previous works on the same dataset.


In today’s world social media is one of the most important tool for communication that helps people to interact with each other and share their thoughts, knowledge or any other information. Some of the most popular social media websites are Facebook, Twitter, Whatsapp and Wechat etc. Since, it has a large impact on people’s daily life it can be used a source for any fake or misinformation. So it is important that any information presented on social media should be evaluated for its genuineness and originality in terms of the probability of correctness and reliability to trust the information exchange. In this work we have identified the features that can be helpful in predicting whether a given Tweet is Rumor or Information. Two machine learning algorithm are executed using WEKA tool for the classification that is Decision Tree and Support Vector Machine.


2022 ◽  
pp. 181-194
Author(s):  
Bala Krishna Priya G. ◽  
Jabeen Sultana ◽  
Usha Rani M.

Mining Telugu news data and categorizing based on public sentiments is quite important since a lot of fake news emerged with rise of social media. Identifying whether news text is positive, negative, or neutral and later classifying the data in which areas they fall like business, editorial, entertainment, nation, and sports is included throughout this research work. This research work proposes an efficient model by adopting machine learning classifiers to perform classification on Telugu news data. The results obtained by various machine-learning models are compared, and an efficient model is found, and it is observed that the proposed model outperformed with reference to accuracy, precision, recall, and F1-score.


2022 ◽  
pp. 255-263
Author(s):  
Chirag Visani ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya

The popularity of the internet has increased the use of e-commerce websites and news channels. Fake news has been around for many years, and with the arrival of social media and modern-day news at its peak, easy access to e-platform and exponential growth of the knowledge available on social media networks has made it intricate to differentiate between right and wrong information, which has caused large effects on the offline society already. A crucial goal in improving the trustworthiness of data in online social networks is to spot fake news so the detection of spam news becomes important. For sentiment mining, the authors specialise in leveraging Facebook, Twitter, and Whatsapp, the most prominent microblogging platforms. They illustrate how to assemble a corpus automatically for sentiment analysis and opinion mining. They create a sentiment classifier using the corpus that can classify between fake, real, and neutral opinions in a document.


Leadership ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Hamid Foroughi ◽  
Yiannis Gabriel ◽  
Marianna Fotaki

This essay, and the special issue it introduces, seeks to explore leadership in a post-truth age, focusing in particular on the types of narratives and counter-narratives that characterize it and at times dominate it. We first examine the factors that are often held responsible for the rise of post-truth in politics, including the rise of relativist and postmodernist ideas, dishonest leaders and bullshit artists, the digital revolution and social media, the 2008 economic crisis and collapse of public trust. We develop the idea that different historical periods are characterized by specific narrative ecologies, which, by analogy to natural ecologies, can be viewed as spaces where different types of narrative and counter-narrative emerge, interact, compete, adapt, develop and die. We single out some of the dominant narrative types that characterize post-truth narrative ecologies and highlight the ability of language to ‘do things with words’ that support both the production of ‘fake news’ and a type of narcissistic leadership that thrive in these narrative ecologies. We then examine more widely leadership in post-truth politics focusing on the resurgence of populist and demagogical types along with the narratives that have made these types highly effective in our times. These include nostalgic narratives idealizing a fictional past and conspiracy theories aimed at arousing fears about a dangerous future.


Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 64
Author(s):  
Panagiotis Kantartopoulos ◽  
Nikolaos Pitropakis ◽  
Alexios Mylonas ◽  
Nicolas Kylilis

Social media has become very popular and important in people’s lives, as personal ideas, beliefs and opinions are expressed and shared through them. Unfortunately, social networks, and specifically Twitter, suffer from massive existence and perpetual creation of fake users. Their goal is to deceive other users employing various methods, or even create a stream of fake news and opinions in order to influence an idea upon a specific subject, thus impairing the platform’s integrity. As such, machine learning techniques have been widely used in social networks to address this type of threat by automatically identifying fake accounts. Nonetheless, threat actors update their arsenal and launch a range of sophisticated attacks to undermine this detection procedure, either during the training or test phase, rendering machine learning algorithms vulnerable to adversarial attacks. Our work examines the propagation of adversarial attacks in machine learning based detection for fake Twitter accounts, which is based on AdaBoost. Moreover, we propose and evaluate the use of k-NN as a countermeasure to remedy the effects of the adversarial attacks that we have implemented.


Author(s):  
Ratna Priyanka P ◽  
Sumanth M V

Sign in / Sign up

Export Citation Format

Share Document