scholarly journals Book Recommendation System Using Machine Learning

Author(s):  
Prof. S. R. Hiray

Abstract: Users can use book recommendation systems to search and select books from a number of options available on the web or elsewhere electronic sources. They give the user a little bit selection of products that fit the description, given a large group of objects and a description of the user needs. Our system will simply provide recommendations. Recommendations are based on previous user activity, such as purchase, habits, reviews, and likes. These systems gain lot of interest. In the proposed system, we have a big problem: when the user buys book, we want to recommend some books that the user can enjoy. Buyers also have a great deal of options when it comes to recommending the best and most appropriate books for them. User development privacy while placing small and minor losses of accuracy. Recommendations. The proposed recommendation system will provide user's ability to view and search the publications and using the Support Vector Machine (SVM), will list the most purchased and top rated books based on the subject name given as input. Keywords: Recommender System, Support Vector Machine (SVM), Machine Learning, Classification etc.

Author(s):  
Fillemon S. Enkono ◽  
Nalina Suresh

Fraudulent e-wallet deposit notification SMSes designed to steal money and goods from m-banking users have become pervasive in Namibia. Motivated by an observed lack of mobile applications to protect users from such deceptions, this study evaluated the ability of machine learning to detect the fraudulent e-wallet deposit notification SMSes. The naïve Bayes (NB) and support vector machine (SVM) classifiers were trained to classify both ham (desired) SMSes and scam (fraudulent) e-wallet deposit notification SMSes. The performances of the two classifier models were then evaluated. The results revealed that the SVM classifier model could detect the fraudulent SMSes more efficiently than the NB classifier.


Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Hendra Saputra ◽  
Setio Basuki ◽  
Mahar Faiqurahman

AbstrakPertumbuhan Malware Android telah meningkat secara signifikan seiring dengan majunya jaman dan meninggkatnya keragaman teknik dalam pengembangan Android. Teknik Machine Learning adalah metode yang saat ini bisa kita gunakan dalam memodelkan pola fitur statis dan dinamis dari Malware Android. Dalam tingkat keakurasian dari klasifikasi jenis Malware peneliti menghubungkan antara fitur aplikasi dengan fitur yang dibutuhkan dari setiap jenis kategori Malware. Kategori jenis Malware yang digunakan merupakan jenis Malware yang banyak beredar saat ini. Untuk mengklasifikasi jenis Malware pada penelitian ini digunakan Support Vector Machine (SVM). Jenis SVM yang akan digunakan adalah class SVM one against one menggunakan Kernel RBF. Fitur yang akan dipakai dalam klasifikasi ini adalah Permission dan Broadcast Receiver. Untuk meningkatkan akurasi dari hasil klasifikasi pada penelitian ini digunakan metode Seleksi Fitur. Seleksi Fitur yang digunakan ialah Correlation-based Feature  Selection (CSF), Gain Ratio (GR) dan Chi-Square (CHI). Hasil dari Seleksi Fitur akan di evaluasi bersama dengan hasil yang tidak menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur CFS menghasilkan akurasi sebesar 90.83% , GR dan CHI sebesar 91.25% dan data yang tidak menggunakan Seleksi Fitur sebesar 91.67%. Hasil dari pengujian menunjukan bahwa Permission dan Broadcast Receiver bisa digunakan dalam mengklasifikasi jenis Malware, akan tetapi metode Seleksi Fitur yang digunakan mempunyai akurasi yang berada sedikit dibawah data yang tidak menggunakan Seleksi Fitur. Kata kunci: klasifikasi malware android, seleksi fitur, SVM dan multi class SVM one agains one  Abstract Android Malware has growth significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each types of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type wiil be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used are Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). Result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicate that permission and broadcast receiver can be used in classyfing type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection. Keywords: Classification Android Malware, Feature Selection, SVM and Multi Class SVM one against one


Author(s):  
Seyma Kiziltas Koc ◽  
Mustafa Yeniad

Technologies which are used in the healthcare industry are changing rapidly because the technology is evolving to improve people's lifestyles constantly. For instance, different technological devices are used for the diagnosis and treatment of diseases. It has been revealed that diagnosis of disease can be made by computer systems with developing technology.Machine learning algorithms are frequently used tools because of their high performance in the field of health as well as many field. The aim of this study is to investigate different machine learning classification algorithms that can be used in the diagnosis of diabetes and to make comparative analyzes according to the metrics in the literature. In the study, seven classification algorithms were used in the literature. These algorithms are Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision Trees, Support Vector Machine and Naive Bayes. Firstly, classification performance of algorithms are compared. These comparisons are based on accuracy, sensitivity, precision, and F1-score. The results obtained showed that support vector machine algorithm had the highest accuracy with 78.65%.


Diabetes Mellitus is considered one of the chronic diseases of humankind which causes an increase in blood sugar. Many complications are reported if DM remains untreated and unidentified. Identification of this disease requires a lot of physical and mental trauma and effort which involves visiting a doctor, blood and urine test at the diagnostic center which consumes more time. Difficulties can be over crossed using the trending technology of Machine learning. The idea of the model is to prognosticate the occurrence of a diabetic with high accuracy. Therefore, two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage. Therefore two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nicolas Schneider ◽  
Keywan Sohrabi ◽  
Henning Schneider ◽  
Klaus-Peter Zimmer ◽  
Patrick Fischer ◽  
...  

Introduction: The rising incidence of pediatric inflammatory bowel diseases (PIBD) facilitates the need for new methods of improving diagnosis latency, quality of care and documentation. Machine learning models have shown to be applicable to classifying PIBD when using histological data or extensive serology. This study aims to evaluate the performance of algorithms based on promptly available data more suited to clinical applications.Methods: Data of inflammatory locations of the bowels from initial and follow-up visitations is extracted from the CEDATA-GPGE registry and two follow-up sets are split off containing only input from 2017 and 2018. Pre-processing excludes patients in remission and encodes the categorical data numerically. For classification of PIBD diagnosis, a support vector machine (SVM), a random forest algorithm (RF), extreme gradient boosting (XGBoost), a dense neural network (DNN) and a convolutional neural network (CNN) are employed. As best performer, a convolutional neural network is further improved using grid optimization.Results: The achieved accuracy of the optimized neural network reaches up to 90.57% on data inserted into the registry in 2018. Less performant methods reach 88.78% for the DNN down to 83.94% for the XGBoost. The accuracy of prediction for the 2018 follow-up dataset is higher than those for older datasets. Neural networks yield a higher standard deviation with 3.45 for the CNN compared to 0.83–0.86 of the support vector machine and ensemble methods.Discussion: The displayed accuracy of the convolutional neural network proofs the viability of machine learning classification in PIBD diagnostics using only timely available data.


Author(s):  
A De Rosa ◽  
R Kulkarni ◽  
A Qazizadeh ◽  
M Berg ◽  
E Di Gialleonardo ◽  
...  

In recent years, significant studies have focused on monitoring the track geometry irregularities through measurements of vehicle dynamics acquired onboard. Most of these studies analyse the vertical irregularity and the vertical vehicle dynamics since the lateral direction is much more challenging due to the non-linearities caused by the contact between the wheels and the rails. In the present work, a machine learning-based fault classifier for the condition monitoring of track irregularities in the lateral direction is proposed. The classifiers are trained with a dataset composed of numerical simulation results and validated with a dataset of measurements acquired by a diagnostic vehicle on the straight track sections of a high-speed line (300 km/h). Classifiers based on decision tree, linear and Gaussian support vector machine algorithms are developed and compared in terms of performance: good results are achieved with the three algorithms, especially with the Gaussian support vector machine. Even though classifiers are data driven, they retain the essence of lateral dynamics.


Author(s):  
Karen Song

This project focuses on using machine learning classification algorithms to determine whether two people are 6 feet apart or not. Two Raspberry Pis were used simulate smart phones. RSSI values of the Bluetooth beacons transmitted between the Raspberry Pis were collected and recorded to train the classifier. The Gaussian Support Vector Machine Classifer yielded the highest testing accuracy of 79.670 and the Decision Tree Classifier yielded the highest AUC of 0.80.


2021 ◽  
pp. 59-68
Author(s):  
Rabia ÖZDEMİR ◽  
Münevver TURANLI

With the development of computer technologies and invention of internet, many concepts have entered our lives. With the starting of wide usage of globalized internet network, concept of machine learning has emerged in time for smarter management of data flow in big dimensions. In line with technological developments, all activities began to be carried to digital environment and as a result of this, concept of e-commerce has entered our lives. E-commerce is one of the areas where machine learning is used most widely. By examining product purchasing situations in accordance with data available at the enterprises, various researches have been made for selection of most appropriate model in order to predict future data. In the study it was mentioned about concepts of e-commerce and machine learning and by applying Logistic Regression, Naïve Bayes and Support Vector Machines being machine learning classification algorithms, it has been aimed to determine the model having best accuracy ratio.


Author(s):  
Karen Song

This project focuses on using machine learning classification algorithms to determine whether two people are 6 feet apart or not. Two Raspberry Pis were used simulate smart phones. RSSI values of the Bluetooth beacons transmitted between the Raspberry Pis were collected and recorded to train the classifier. The Gaussian Support Vector Machine Classifer yielded the highest testing accuracy of 79.670 and the Decision Tree Classifier yielded the highest AUC of 0.80.


2020 ◽  
Vol 4 (1) ◽  
pp. 86-96
Author(s):  
Ricky Risnantoyo ◽  
Arifin Nugroho ◽  
Kresna Mandara

Corona virus outbreaks that occur in almost all countries in the world have an impact not only in the health sector, but also in other sectors such as tourism, finance, transportation, etc. This raises a variety of sentiments from the public with the emergence of corona virus as a trending topic on Twitter social media. Twitter was chosen by the public because it can disseminate information in real time and can see market reactions quickly. This research uses "tweet" data or public tweet related to "Corona Virus" to see how the sentiment polarity arises. Text mining techniques and three machine learning classification algorithms are used, including Naive Bayes, Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) to build a tweet classification model of sentiments whether they have positive, negative, or neutral polarity. The highest test results are generated by the Support Vector Machine (SVM) algorithm with an accuracy value of 76.21%, a precision value of 78.04%, and a recall value of 71.42%.Keywords: Machine Learning, Corona Virus, Twitter, Sentiment Analysis.


Sign in / Sign up

Export Citation Format

Share Document