Development of the technology of microplasma spraying of functional coatings of the nickel – aluminum system for the creation of catalytically active compositions

Author(s):  
N. V. Yakovleva ◽  
B. V. Farmakovsky ◽  
R. Yu. Bystrov ◽  
M. A. Yurkov

The results of comprehensive studies on the development of an innovative technology for microplasma spraying of catalytically active systems based on nickel –aluminum intermetallic compositions are presented. A batch of high-capacity chemical current sources based on these compositions with a mass energy level of up to 250 Wt h / kg has been manufactured and tested.

2019 ◽  
pp. 96-105
Author(s):  
M. L. Shishkova ◽  
N. V. Yakovleva

The paper considers science and engineering aspects of catalytically active compositions creation as regards immobilized catalysts for reforming hydrocarbon raw materials into hydrogen fuel. The authors investigate synthesis of catalytic powder mixtures and manufacturing of functional coatings by supersonic cold gas dynamic spraying. Research results in the field of creation of catalysts for steam conversion of methane to hydrogenous fuel on the metal support (Cr15Al15 tape support) are given. Composite powder mixtures (Ni–Al–Al(OH)3– Ca(OH)2–Mg(OH)2) were used as starting materials.


1986 ◽  
Vol 103 (6) ◽  
pp. 2411-2420 ◽  
Author(s):  
E F Plow ◽  
D E Freaney ◽  
J Plescia ◽  
L A Miles

The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time-dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Hope Ikoghene Obakhena ◽  
Agbotiname Lucky Imoize ◽  
Francis Ifeanyi Anyasi ◽  
K. V. N. Kavitha

AbstractIn recent times, the rapid growth in mobile subscriptions and the associated demand for high data rates fuels the need for a robust wireless network design to meet the required capacity and coverage. Deploying massive numbers of cellular base stations (BSs) over a geographic area to fulfill high-capacity demands and broad network coverage is quite challenging due to inter-cell interference and significant rate variations. Cell-free massive MIMO (CF-mMIMO), a key enabler for 5G and 6G wireless networks, has been identified as an innovative technology to address this problem. In CF-mMIMO, many irregularly scattered single access points (APs) are linked to a central processing unit (CPU) via a backhaul network that coherently serves a limited number of mobile stations (MSs) to achieve high energy efficiency (EE) and spectral gains. This paper presents key areas of applications of CF-mMIMO in the ubiquitous 5G, and the envisioned 6G wireless networks. First, a foundational background on massive MIMO solutions-cellular massive MIMO, network MIMO, and CF-mMIMO is presented, focusing on the application areas and associated challenges. Additionally, CF-mMIMO architectures, design considerations, and system modeling are discussed extensively. Furthermore, the key areas of application of CF-mMIMO such as simultaneous wireless information and power transfer (SWIPT), channel hardening, hardware efficiency, power control, non-orthogonal multiple access (NOMA), spectral efficiency (SE), and EE are discussed exhaustively. Finally, the research directions, open issues, and lessons learned to stimulate cutting-edge research in this emerging domain of wireless communications are highlighted.


Author(s):  
N. V. Yakovleva ◽  
B. V. Farmakovsky ◽  
A. M. Makarov

The article presents the results of a study of the catalytically active system Ni-Al-Al(OH)3-Ca(OH)2-Mg(OH)2 for efficient synthesis gas production. A technology for obtaining volumetric porous functional coatings has been developed using the method of supersonic cold gas-dynamic spraying. The advantages of this method and its possibilities from the point of view of producing synthesis gas with high activation energy are shown.


2021 ◽  
Author(s):  
Eleni Koutsopoulou ◽  
Aikaterini Servou ◽  
George Aggelopoulos

<p>The ROBOMINERS (Resilient Bio-inspired Modular Robotic Miner) project aims at developing new methods and technologies (prototype automation and robotics technology) to locate and exploit underground mineral deposits and is funded under the European Union’s Research and Innovation programme Horizon 2020. The project targets mineral deposits that are generally considered “non-economical” either because they are not accessible anymore for conventional mining techniques, or they have been previously explored but exploitation was considered uneconomic due to the small size of the deposits or the difficulty to access them (abandoned, small, ultra-depth deposits).</p><p> </p><p>The European Federation of Geologists (EFG) is part of the Robominers consortium and its role includes the collection of publicly available data at a national level on mineral deposits which are potential targets on the developed mining technology. The Association of Greek Geologists (AGG) is participating as an EFG Linked Third Party in the project aiming, among others, at the creation of a European database of potentially suitable ore deposits for the utilization of the Robominers technology.</p><p> </p><p>The creation of an ore deposits’ European database is a crucial procedure for the best possible design of exploration and exploitation applying the Robominers innovative approach. The AGG has contributed in the building of a database at a national level (for Greece), of the major and most important mineral deposits, according to the project requirements. A number of ore deposits in which Robominers advanced technology may provide a unique solution to mineral extraction, include porphyry and epithermal deposits and especially vein-like types, but volcanogenic massive sulphide (VMS-type) and lense-like or layered orthomagmatic deposits can also be of high importance. From the above mentioned ore deposits the most abundant in Greece are epithermal deposits, deposits in hydrothermal veins, porphyry copper, as well as chromites in ophiolite complexes. Regarding the spatial distribution vein-type or metasomatic deposits are located mostly in Northern Greece (Western Macedonia and Thrace regions) while significant variable-mineralization deposits are related with the Attico-Cycladic belt volcanism (mainly Lavrion, Evia, and islands in the Aegean Sea). Finally, PGE bearing chromite deposits and bauxite deposits, located mainly in Central Greece, may also be significant for the project.</p><p> </p><p>The establishment of a joined European Robominers database is of great significance for the progress of the project since it will provide essential information on key outputs such as the deposit type and commodities, the host rock, and the spatial distribution of the project’s targeted ore deposits and will provide valuable knowledge regarding the future planning of the exploration and exploitation from the developed Robominers innovative technology approach.</p><p>Dr Eleni Koutsopoulou</p><p>Coordinator of the project</p><p>On Behalf of the:</p><p>Association of Greek Geologists</p><p>Didotou 26,10680, Athens, Greece</p><p>VAT ID: EL-999600130</p><p> </p><p> </p>


2020 ◽  
Vol 54 ◽  
pp. 99-108
Author(s):  
Luís Lopes ◽  
Balazs Bodo ◽  
Claudio Rossi ◽  
Stephen Henley ◽  
Gorazd Žibret ◽  
...  

Abstract. Within the ROBOMINERS project an innovative technology for the future exploitation of small and difficult to access mineral deposits is being studied. The project has two main objectives. First, the development of a bioinspired reconfigurable robotic miner prototype, able to navigate, explore and mine selectively with a certain degree of autonomy. The robot-miner will be able to work under different conditions, making the exploitation of many mineral deposits economically feasible, while reducing social and environmental impacts associated with conventional mining methods. The second objective is the creation of a vision of a new mining ecosystem, its function, parts, research roadmaps and visions for years 2030 and 2050, including creation of novel ideas from other sectors, particularly robotics. The robotic ecosystem concept will be tested in representative sites across Europe with simulations, showcasing the different mining environments and conditions where it can be applied.


Author(s):  
Jiao Meng ◽  
Yue Zhao ◽  
Haining Li ◽  
Ruiping Chen ◽  
Xun Sun ◽  
...  

CoTCPP transfer photoexcited electrons to CeO2 by d–f electron coupling. The in situ generation of catalytically active sites: reduction on CeO2 accompanied with the creation of oxygen vacancies and oxidation on CoTCPP that transforms into CoOOH.


2014 ◽  
Vol 21 (4) ◽  
pp. 744-750
Author(s):  
Vladimir Martis ◽  
Martin Martis ◽  
John Lipp ◽  
Dirk Detollenaere ◽  
Trevor Rayment ◽  
...  

Energy-resolved electron-yield X-ray absorption spectroscopy is a promising technique for probing the near-surface structure of nanomaterials because of its ability to discriminate between the near-surface and bulk of materials. So far, the technique has only been used in model systems. Here, the local structural characterization of nanoporous cobalt-substituted aluminophosphates is reported and it is shown that the technique can be employed for the study of open-framework catalytically active systems. Evidence that the cobalt ions on the surface of the crystals react differently to those in the bulk is found.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 821
Author(s):  
Ángel Benítez ◽  
Lizbeth Armijos ◽  
James Calva

Air pollution is one of the main global environmental problems, where bryophytes, due to their high capacity to retain metals and other pollutants, have been widely used in active air quality monitoring studies in temperate and tropical zones. Thus, in this study, we analyzed for the first time the concentrations of eight metals (cadmium, copper, nickel, aluminum, iron, manganese, lead and zinc) in three species of transplanted mosses (Rhacocarpus purpurascens (Brid.) Paris, Sphagnum sp. and Thuidium delicatulum (Hedw.) Schimp.) from Ecuador. Significant differences were found for the three species in the concentrations of Al, Mn, Fe and Zn between urban and control areas, pointing to the Central zone as the main source of contamination with the highest concentrations of Al, Fe, Mn and Zn, related to vehicular traffic. Lead did not differ between zones for Rhacocarpus purpurascens and Sphagnum sp.; however, Thuidium delicatulum accumulated different concentrations between urban areas and the control areas. The three species of mosses provided valuable information on the contamination of Al, Fe, Mn, Pb and Zn in the urban area of the city of Loja, and therefore can be used in future air quality monitoring programs over time in tropical cities.


Sign in / Sign up

Export Citation Format

Share Document