scholarly journals Reg3g ameliorates Tacrolimus-induced pancreatic β cell dysfunction by restoring mitochondrial function

Author(s):  
Ming Xiang ◽  
Senlin Li ◽  
Hong Zhou ◽  
Mengyuan Xie ◽  
Zijun Zhang ◽  
...  

Background and Purpose: Tacrolimus (Tac) induces pancreatic β cell dysfunction, causing new-onset diabetes mellitus (NODM) after transplantation. Reg3g is a member of the pancreatic regenerative gene family, as reported to improve type 1 diabetes by promoting β cell regeneration. Here, we aim to investigate the role and approach of Reg3g in reversing Tac-induced β cell dysfunction and NODM in mice. Experimental Approach: Circulating REG3A (the human homolog of mouse Reg3g) concentrations of patients treated with Tac after heart transplantation(HT) were detected. The glucose-stimulated insulin secretion (GSIS) and mitochondrial functions, including mitochondria membrane potential (MMP), mitochondria calcium uptake, ATP production, and oxygen consumption rate (OCR), were tested in β cells. Effects of Reg3g on Tac-induced NODM in mice were studied. Key Results: Circulating REG3A levels significantly decreased in NODM patients treated with Tac compared with those without diabetes. Tac down-regulated Reg3g via inhibiting STAT3-mediated transcription activation, while Reg3g protected against Tac-induced apoptosis of β cells. Besides, Reg3g restored GSIS suppressed by Tac in β cells via improving mitochondrial function, including increased MMP, mitochondria calcium uptake, ATP production, and OCR. Mechanically, Reg3g increased accumulation of pSTAT3(Ser727) in mitochondria by activating ERK1/2-STAT3 signaling pathway, leading to restoration of Tac-caused mitochondrial impairment. Moreover, Reg3g overexpression effectively ameliorated Tac-induced NODM in mice. Conclusion and Implications: Reg3g ameliorates Tac-induced pancreatic β cell dysfunction by restoring mitochondrial function via a pSTAT3(Ser727)-dependent way. Our observations identify a novel Reg3g-involved mechanism underlying the augmented incidence of Tac-induced NODM and reveal that Reg3g ameliorates Tac-induced β cell dysfunction.

2010 ◽  
Vol 30 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Marta Michalska ◽  
Gabriele Wolf ◽  
Reinhard Walther ◽  
Philip Newsholme

Various pancreatic β-cell stressors including cytokines and saturated fatty acids are known to induce oxidative stress, which results in metabolic disturbances and a reduction in insulin secretion. However, the key mechanisms underlying dysfunction are unknown. We investigated the effects of prolonged exposure (24 h) to pro-inflammatory cytokines, H2O2 or PA (palmitic acid) on β-cell insulin secretion, ATP, the NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) component p47phox and iNOS (inducible nitric oxide synthase) levels using primary mouse islets or clonal rat BRIN-BD11 β-cells. Addition of a pro-inflammatory cytokine mixture [IL-1β (interleukin-1β), TNF-α (tumour necrosis factor-α) and IFN-γ (interferon-γ)] or H2O2 (at sub-lethal concentrations) inhibited chronic (24 h) levels of insulin release by at least 50% (from islets and BRIN-BD11 cells), while addition of the saturated fatty acid palmitate inhibited acute (20 min) stimulated levels of insulin release from mouse islets. H2O2 decreased ATP levels in the cell line, but elevated p47phox and iNOS levels as did cytokine addition. Similar effects were observed in mouse islets with respect to elevation of p47phox and iNOS levels. Addition of antioxidants SOD (superoxide dismutase), Cat (catalase) and NAC (N-acetylcysteine) attenuated H2O2 or the saturated fatty acid palmitate-dependent effects, but not cytokine-induced dysfunction. However, specific chemical inhibitors of NADPH oxidase and/or iNOS appear to significantly attenuate the effects of cytokines, H2O2 or fatty acids in islets. While pro-inflammatory cytokines are known to increase p47phox and iNOS levels in β-cells, we now report that H2O2 can increase levels of the latter two proteins, suggesting a key role for positive-feedback redox sensitive regulation of β-cell dysfunction.


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4065-4073 ◽  
Author(s):  
Xiongfei Zhang ◽  
Wei Yong ◽  
Jinghuan Lv ◽  
Yunxia Zhu ◽  
Jingjing Zhang ◽  
...  

Abstract Forkhead Box O1 (FoxO1) is a key transcription regulator of insulin/IGF-I signaling pathway, and its activity can be increased by dexamethasone (DEX) in several cell types. However, the role of FoxO1 in DEX-induced pancreatic β-cell dysfunction has not been fully understood. Therefore, in this study, we investigated whether FoxO1 could mediate DEX-induced β-cell dysfunction and the possible underlying mechanisms in pancreatic β-cell line RINm5F cells and primary rat islet. We found that DEX markedly increased FoxO1 mRNA and protein expression and decreased FoxO1 phosphorylation through the Akt pathway, which resulted in an increase in active FoxO1 in RINm5F cells and isolated rat islets. Activated FoxO1 subsequently inhibited pancreatic duodenal homeobox-1 expression and induced nuclear exclusion of pancreatic duodenal homeobox-1. Knockdown of FoxO1 by RNA interference restored the expression of pancreatic duodenal homeobox-1 and prevented DEX-induced dysfunction of glucose-stimulated insulin secretion in rat islets. Together, the results of present study demonstrate that FoxO1 is integrally involved in DEX-induced inhibition of pancreatic duodenal homeobox-1 and glucose-stimulated insulin secretion dysfunction in pancreatic islet β-cells. Inhibition of FoxO1 can effectively protect β-cells against DEX-induced dysfunction.


2021 ◽  
Author(s):  
Ramkumar Mohan ◽  
Seokwon Jo ◽  
Amber Lockridge ◽  
Deborah A. Ferrington ◽  
Kevin Murray ◽  
...  

O-GlcNAc transferase (OGT), a nutrient-sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. Here, we identified the role of OGT in mitochondrial function in β-cells. Constitutive deletion of OGT (βOGTKO) or inducible ablation in mature β-cells (iβOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from βOGTKO, but not iβOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production and glycolysis. Alleviating ER stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in βOGTKO mice. We identified altered islet proteome between βOGTKO and iβOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in βOGTKO islets. Pdx1 over-expression increased insulin content and improved mitochondrial morphology and function in βOGTKO islets. These data underscore the essential role of OGT in regulating β-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal β-cell physiology. <br>


2002 ◽  
Vol 277 (51) ◽  
pp. 49676-49684 ◽  
Author(s):  
Christian E. Wrede ◽  
Lorna M. Dickson ◽  
Melissa K. Lingohr ◽  
Isabelle Briaud ◽  
Christopher J. Rhodes

Free fatty acids (FFA) have been reported to reduce pancreatic β-cell mitogenesis and to increase apoptosis. Here we show that the FFA, oleic acid, increased apoptosis 16-fold in the pancreatic β-cell line, INS-1, over a 18-h period as assessed by Hoechst 33342/propidium iodide staining and caspase-3 and -9 activation, with negligible necrosis. A parallel analysis of the phosphorylation activation of protein kinase B (PKB) showed this was reduced in the presence of FFA that correlated with the incidence of apoptosis. At stimulatory 15 mmglucose and/or in the added presence of insulin-like growth factor 1, FFA-induced β-cell apoptosis was lessened compared with that at a basal 5 mmglucose. However, most strikingly, adenoviral mediated expression of a constitutively active PKB, but not a “kinase-dead” PKB variant, essentially prevented FFA-induced β-cell apoptosis under all glucose/insulin-like growth factor 1 conditions. Further analysis of pro-apoptotic downstream targets of PKB, implicated a role for PKB-mediated phosphorylation inhibition of glycogen synthase kinase-3α/β and the forkhead transcription factor, FoxO1, in protection of FFA-induced β-cell apoptosis. In addition, down-regulation of the pro-apoptotic tumor suppresser protein, p53, via PKB-mediated phosphorylation of MDM2 might also play a role in partially protecting β-cells from FFA-induced apoptosis. Adenoviral mediated expression of wild type p53 potentiated FFA-induced β-cell apoptosis, whereas expression of a dominant negative p53 partly inhibited β-cell apoptosis by ∼50%. Hence, these data demonstrate that PKB activation plays an important role in promoting pancreatic β-cell survival in part via inhibition of the pro-apoptotic proteins glycogen synthase kinase-3α/β, FoxO1, and p53. This, in turn, provides novel insight into the mechanisms involved in FFA-induced β-cell apoptosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1509
Author(s):  
Natsuki Eguchi ◽  
Nosratola D. Vaziri ◽  
Donald C. Dafoe ◽  
Hirohito Ichii

Diabetes is a chronic metabolic disorder characterized by inappropriately elevated glucose levels as a result of impaired pancreatic β cell function and insulin resistance. Extensive studies have been conducted to elucidate the mechanism involved in the development of β cell failure and death under diabetic conditions such as hyperglycemia, hyperlipidemia, and inflammation. Of the plethora of proposed mechanisms, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and oxidative stress have been shown to play a central role in promoting β cell dysfunction. It has become more evident in recent years that these 3 factors are closely interrelated and importantly aggravate each other. Oxidative stress in particular is of great interest to β cell health and survival as it has been shown that β cells exhibit lower antioxidative capacity. Therefore, this review will focus on discussing factors that contribute to the development of oxidative stress in pancreatic β cells and explore the downstream effects of oxidative stress on β cell function and health. Furthermore, antioxidative capacity of β cells to counteract these effects will be discussed along with new approaches focused on preserving β cells under oxidative conditions.


2018 ◽  
Vol 73 (7-8) ◽  
pp. 281-289 ◽  
Author(s):  
Kung-Ha Choi ◽  
Mi Hwa Park ◽  
Hyun Ah Lee ◽  
Ji-Sook Han

Abstract Exposure to high levels of glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction, including cell apoptosis and impaired glucose-stimulated insulin secretion. The aim of this study was to explore the effect of cyanidin-3-rutinoside (C3R), a derivative of anthocyanin, on glucotoxicity-induced apoptosis in INS-1 pancreatic β cells. Glucose (30 mM) treatment induced INS-1 pancreatic β cell death, but glucotoxicity and apoptosis significantly decreased in cells treated with 50 μM C3R compared to that observed in 30 mM glucose-treated cells. Furthermore, hyperglycemia increased intracellular reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) levels, while C3R treatment reduced these in a dose-dependent manner. C3R also increased the activity of antioxidant enzymes, markedly reduced the expression of pro-apoptotic proteins (such as Bax, cytochrome c, caspase 9 and caspase 3), and increased the expression of the anti-apoptotic protein, Bcl-2, in hyperglycemia-exposed cells. Finally, cell death was examined using annexin V/propidium iodide staining, which revealed that C3R significantly reduced high glucose-induced apoptosis. In conclusion, C3R may have therapeutic effects against hyperglycemia-induced β cell damage in diabetes.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1573
Author(s):  
Suma Elumalai ◽  
Udayakumar Karunakaran ◽  
Jun-Sung Moon ◽  
Kyu-Chang Won

In type 2 diabetes, metabolic stress has a negative impact on pancreatic β-cell function and survival (T2D). Although the pathogenesis of metabolic stress is complex, an imbalance in redox homeostasis causes abnormal tissue damage and β-cell death due to low endogenous antioxidant expression levels in β-cells. Under diabetogenic conditions, the susceptibility of β-cells to oxidative damage by NADPH oxidase has been related to contributing to β-cell dysfunction. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions by NADPH oxidase, as well as the therapeutic benefits of NOX inhibitors, which may provide clues for understanding the pathomechanisms and developing strategies aimed at the treatment or prevention of metabolic stress associated with β-cell failure.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 901
Author(s):  
Taewon Han ◽  
Eun Ko ◽  
Minji Kim ◽  
Moonsung Choi ◽  
Changho Lee ◽  
...  

Type 2 diabetes mellitus is characterized by insulin resistance and pancreatic beta (β)-cell dysfunction. Accumulating evidence suggests that mitochondrial dysfunction may cause insulin resistance in peripheral tissues. As commercial hypoglycemic drugs have side effects, it is necessary to develop safe and effective natural compound-based hypoglycemic treatments. This study aimed to investigate the hypoglycemic effects of Mori Ramulus ethanol extract (ME) in a high-fat diet (HFD)-induced diabetes mouse model to decipher the underlying mechanisms focusing on apoptosis and mitochondrial function. ME significantly decreased tunicamycin-induced apoptotic cell death and increased insulin secretion following glucose stimulation in NIT-1 pancreatic β-cells. Tunicamycin-exposed NIT-1 pancreatic β-cells showed elevated reactive oxygen species levels and reduced mitochondrial membrane potential, which were reversed by ME treatment. ME inhibited the tunicamycin-induced apoptosis cascade in tunicamycin-exposed NIT-1 pancreatic β-cells. In HFD diabetic mice, the serum-free fatty acid and insulin levels decreased following a 15-week ME administration. Glucose and insulin tolerance tests showed that ME improved insulin sensitivity. Moreover, ME ameliorated pancreatic β-cell mass loss in diabetic mice. Finally, ME-treated HFD-fed mice showed improved hepatic mitochondrial function resulting in insulin sensitivity in target tissues. Thus, ME provides protection against pancreatic β-cell apoptosis and prevents insulin resistance by improving mitochondrial function.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Asghar Ghasemi

AbstractHyperuricemia is associated with insulin resistance, pancreatic β-cell dysfunction and consequently with development of type 2 diabetes. Although a direct relationship between high levels of uric acid (UA) and the development of diabetes is still a controversial issue, there is some evidence that strongly points to pancreatic β-cells damage as a result of high serum UA levels. Here, the mechanisms underlying UA-induced β-cell damage are discussed. Available literature indicates that UA can decrease glucose-stimulated insulin secretion and cause β-cell death. The mechanisms underlying these effects are UA-induced oxidative stress and inflammation within the β-cells. UA also stimulates inducible nitric oxide (NO) synthase (iNOS) gene expression leading to NO-induced β-cell dysfunction. Thus hyperuricemia may potentially cause β-cell dysfunction, leading to diabetes. It may be hypothesized that in hyperuricemic subjects, UA-lowering drugs may be beneficial in preventing diabetes.


Sign in / Sign up

Export Citation Format

Share Document