scholarly journals Surfactant Interactions and Solvent Phase Solubility Modulate Small Molecule Release from Emulsion Electrospun Fibers

Author(s):  
Pamela Johnson ◽  
Justin Lehtinen ◽  
Jennifer Robinson

Emulsion electrospinning represents a tunable system for the fabrication of porous scaffolds for controlled, localized drug delivery in tissue engineering applications. This study aimed to elucidate the role of model drug interactions with emulsion chemistry on loading and release rates from fibers with controlled fiber diameter and fiber volume fraction. Nile Red and Rhodamine B were used as model drugs and encapsulation efficiency and release rates were determined from poly(caprolactone) (PCL) electrospun fibers spun either with no surfactant (Span 80), surfactant, or water-in-oil emulsions. Drug loading efficiency and release rates were modulated by both surfactant and aqueous internal phase in the emulsions as a function of drug molecule hydrophobicity. Overall, these results demonstrate the role of intermolecular interactions and drug phase solubility on the release from emulsion electrospun fibers and highlight the need to independently control these parameters when designing fibers for use as tunable drug delivery systems.

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 185
Author(s):  
Hamed Hosseinian ◽  
Samira Hosseini ◽  
Sergio O. Martinez-Chapa ◽  
Mazhar Sher

In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Anisha D’Souza ◽  
Ranjita Shegokar

: In recent years, SLNs and NLCs are among the popular drug delivery systems studied for delivery of lipophilic drugs. Both systems have demonstrated several beneficial properties as an ideal drug-carrier, optimal drug-loading and good long-term stability. NLCs are getting popular due to their stability advantages and possibility to load various oil components either as an active or as a matrix. This review screens types of oils used till date in combination with solid lipid to form NLCs. These oils are broadly classified in two categories: Natural oils and Essential oils. NLCs offer range advantages in drug delivery due to the formation of imperfect matrix owing to the presence of oil. The type and percentage of oil used determines optimal drug loading and stability. Literature shows that variety of oils is used in NLCs mainly as matrix, which is from natural origin, triglycerides class. On the other hand, essential oils not only serve as a matrix but as an active. In short, oil is the key ingredient in formation of NLCs, hence needs to be selected wisely as per the performance criteria expected.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5672
Author(s):  
Bethany Almeida ◽  
Okhil K. Nag ◽  
Katherine E. Rogers ◽  
James B. Delehanty

In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Deepali Verma ◽  
Neha Gulati ◽  
Shreya Kaul ◽  
Siddhartha Mukherjee ◽  
Upendra Nagaich

The key role of protein based nanostructures has recently revolutionized the nanomedicine era. Protein nanoparticles have turned out to be the major grounds for the transformation of different properties of many conventional materials by virtue of their size and greater surface area which instigates them to be more reactive to some other molecules. Protein nanoparticles have better biocompatibilities and biodegradability and also have the possibilities for surface modifications. These nanostructures can be synthesized by using protein like albumin, gelatin, whey protein, gliadin, legumin, elastin, zein, soy protein, and milk protein. The techniques for their fabrication include emulsification, desolvation, complex coacervation, and electrospray. The characterization parameters of protein nanoparticles comprise particle size, particle morphology, surface charge, drug loading, determination of drug entrapment, and particle structure and in vitro drug release. A plethora of protein nanoparticles applications via different routes of administration are explored and reported by eminent researchers which are highlighted in the present review along with the patents granted for protein nanoparticles as drug delivery carriers.


Author(s):  
Kevin M. Shakesheff ◽  
Martyn C. Davies ◽  
Clive J. Roberts ◽  
Saul J. B. Tendler ◽  
Philip M. Williams

2020 ◽  
Vol 23 (15) ◽  
Author(s):  
Ritika Puris ◽  
Chandan Sharma ◽  
Dr. Manish Goswami

Author(s):  
Prabhat Kumar Sahoo ◽  
Neha S.L ◽  
Arzoo Pannu

Lipids are used as vehicles for the preparation of various formulations prescribed for administrations, including emulsions, ointments, suspension, tablets, and suppositories. The first parental nano-emulsion was discovered from the 1950s when it was added to the intravenous administration of lipid and lipid-soluble substances. Lipid-based drug delivery systems are important nowadays. Solid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) are very proficient due to the ease of production process, scale-up capability, bio-compatibility, the biodegradability of formulation components and other specific features of the proposed route. The administration or nature of the materials must be loaded into these delivery systems. The main objectives of this review are to discuss an overview of second-generation nanoparticles, their limitations, structures, and route of administration, with emphasis on the effectiveness of such formulations. NLC is the second generation of lipid nanoparticles having a structure like nanoemulsion. The first generation of nanoparticles was SLN. The difference between both of them is at its core. Both of them are a colloidal carrier in submicron size in the range of 40-1000 nm. NLC is the most promising novel drug delivery system over the SLN due to solving the problem of drug loading and drug crystallinity. Solid and liquid lipids combination in NLC formation, improve its quality as compare to SLN. NLC has three types of structures: random, amorphous, and multiple. The random structure containing solid-liquid lipids and consisting crystal and the liquid lipid irregular in shape; thereby enhance the ability of the lipid layer to pass through the membrane. The second is the amorphous structure. It is less crystalline in nature and can prevent the leakage of the loaded drug. The third type is multiple structures, which have higher liquid lipid concentrations than other types. The excipients used to form the NLC are bio-compatible, biodegradable and non-irritating, most of which can be detected using GRAS. NLC is a promising delivery system to deliver the drug through pulmonary, ocular, CNS, and oral route of administration. Various methods of preparation and composition of NLC influence its stability Parameters. In recent years at the educational level, the potential of NLC as a delivery mechanism targeting various organs has been investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document