scholarly journals Production of fine zinc borate in industrial scale

2012 ◽  
Vol 18 (4-1) ◽  
pp. 547-553 ◽  
Author(s):  
Gaye Çakal

In this study, zinc borate production in an industrial scale batch reactor was carried out at the optimum process conditions determined in the previous studies performed at the laboratory and pilot scale reactors. The production was done via the heterogeneous reaction of boric acid and zinc oxide. The samples were characterized by chemical analysis, XRD, TGA, SEM and particle size distribution. The final product which was obtained in the industrial scale reactor was 2ZnO.3B2O3.3H2O. The kinetic data for the zinc borate production reaction fit to a modified logistic model where the lag time was taken into account. As observed, the reaction time was influenced by scaling up. There was a lag time of 120 min for the industrial scale production and thus, the reaction completion time was 70 min longer compared to pilot scale. It should be emphasized that the specific reaction rate, k; as well as the average particle size and the hydration temperature of zinc borate are unaffected by scale up.

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


2012 ◽  
Vol 184-185 ◽  
pp. 1146-1149
Author(s):  
Ping Li ◽  
Hai Yang Wang ◽  
Wan E Wu ◽  
Shuai Ling

To reduce average particle size,magnesium fluoride was directly synthesized from MgF2 and NH4F,the product was characterized by X-ray diffractomer,scanning electron microscopy. Orthogonal experiment was used to explore the influences of factors on the average particle size. Found that the effect order of factors on the average particle size is MgCl2 concentration,NH4F concentration,reaction temperature,reaction time,in the optimization of process conditions,average particle size is 23.1 nm.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Barros ◽  
H. Pereira ◽  
J. Campos ◽  
A. Marques ◽  
J. Varela ◽  
...  

Abstract Industrial scale-up of microalgal cultures is often a protracted step prone to culture collapse and the occurrence of unwanted contaminants. To solve this problem, a two-stage scale-up process was developed – heterotrophically Chlorella vulgaris cells grown in fermenters (1st stage) were used to directly inoculate an outdoor industrial autotrophic microalgal production unit (2nd stage). A preliminary pilot-scale trial revealed that C. vulgaris cells grown heterotrophically adapted readily to outdoor autotrophic growth conditions (1-m3 photobioreactors) without any measurable difference as compared to conventional autotrophic inocula. Biomass concentration of 174.5 g L−1, the highest value ever reported for this microalga, was achieved in a 5-L fermenter during scale-up using the heterotrophic route. Inocula grown in 0.2- and 5-m3 industrial fermenters with mean productivity of 27.54 ± 5.07 and 31.86 ± 2.87 g L−1 d−1, respectively, were later used to seed several outdoor 100-m3 tubular photobioreactors. Overall, all photobioreactor cultures seeded from the heterotrophic route reached standard protein and chlorophyll contents of 52.18 ± 1.30% of DW and 23.98 ± 1.57 mg g−1 DW, respectively. In addition to providing reproducible, high-quality inocula, this two-stage approach led to a 5-fold and 12-fold decrease in scale-up time and occupancy area used for industrial scale-up, respectively.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4782
Author(s):  
Wieslaw Urbaniak ◽  
Tomasz Majewski ◽  
Ryszard Wozniak ◽  
Judyta Sienkiewicz ◽  
Jozef Kubik ◽  
...  

The purpose of the conducted experiments was to test the selected properties of materials intended for porous sintered bearings containing layered materials in the form of powders with an average particle size of 0.5–1.5 μm, with very good tribological properties. The subject of the research was a sinter based on iron powder with the addition of layered materials; molybdenum disulfide MoS2 (average particle size 1.5 μm), tungsten disulfide WS2 (average particle size 0.6 μm), hexagonal boron nitride, h-BN (average particle size 0.5 and 1.5 μm) with two different porosities. The article presents the results of density and porosity tests, compressive strength, metallographic and tribological tests and the assessment of changes in the surface condition occurring during the long storage period. The use of layered additives allows for an approximately 20% lower coefficient of friction. In the case of sulfides, the technological process of pressing 250 MPa, 350 MPa, and sintering at a temperature of 1120 °C allows us to obtain a material with good strength and tribological properties, better than in the case of h-BN. However, the main problem is the appearance of elements from the decomposition of sulfide compounds in the material matrix, which results in rapid material degradation. In hexagonal boron nitride, such disintegration under these conditions does not occur; the material as observed does not degrade. In this case, the material is characterized by lower hardness, resulting from a different behavior of hexagonal boron nitride in the pressing and sintering process; in this case, pressing at a pressure of 350 MPa seems to be too low. However, taking into account that even with these technological parameters, the obtained material containing 2.5% h-BN with an average grain size of 1.5 μm allowed obtaining a coefficient of friction at the level of 0.41, which, with very good material durability, seems to be very positive news before further tests.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 561 ◽  
Author(s):  
Snežana Zlatanović ◽  
Ana Kalušević ◽  
Darko Micić ◽  
Jovanka Laličić-Petronijević ◽  
Nikola Tomić ◽  
...  

Apple pomace flour (APF) with high content of dietary fibers (DF), total polyphenolics (TPCs) and flavonoids (TFCs) was produced at the industrial scale. Bulk and tapped density, swelling, water and oil holding capacity, solubility and hydration density of fine and coarse APF with average particle size 0.16 and 0.50 mm were compared. The effect of wheat flour substitution with 25%, 50% and 75% of fine and coarse APF was studied upon cookies production at the industrial scale and after one year of storage. Coarse APF performed better in respect to sensorial properties, content and retention of dietary compounds and antioxidant (AO) activity. The cookies with optimal share of coarse APF (50%) contained 21 g/100 g of DF and several times higher TPC, TFC as well as AO activity than control cookies, retained well health promoting compounds and maintained an intensely fruity aroma and crispy texture. They were acceptable for consumers according to the hedonic test.


Author(s):  
Licínia Timochenco ◽  
Raquel Costa-Almeida ◽  
Diana Bogas ◽  
Filipa A.L.S. Silva ◽  
Joana Silva ◽  
...  

Nanographene oxide (GOn) constitutes a nanomaterial of high value in the biomedical field. However, large scale production of highly stable aqueous dispersions of GOn is yet to be achieved. In this work, we explored high-power ultrasonication as a method to reduce particle size of GO and characterized the impact of the process in the physico-chemical properties of the material. GOn was obtained with lateral dimensions of 99 ±43 nm and surface charge of −39.9 ± 2.2 mV. High-power ultrasonication enabled an improvement of stability features, particularly by resulting in a decrease of the average particle size, as well as zeta potential, in comparison to GO obtained by low-power exfoliation and centrifugation (287 ± 139 nm; −29.7 ± 1.2 mV). Re-markably, GOn aqueous dispersions were stable for up to 6 months of shelf-time, with a global process yield of 74%. This novel method enabled the production of large volumes of highly con-centrated (7.5 mg mL-1) GOn aqueous dispersions. Chemical characterization of GOn allowed the identification of characteristic oxygen functional groups, supporting high-power ultrasonication as a fast, efficient and productive process for reducing GO lateral size, while maintaining the material’s chemical features.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1916
Author(s):  
Licínia Timochenco ◽  
Raquel Costa-Almeida ◽  
Diana Bogas ◽  
Filipa A. L. S. Silva ◽  
Joana Silva ◽  
...  

Nanographene oxide (GOn) constitutes a nanomaterial of high value in the biomedical field. However, large scale production of highly stable aqueous dispersions of GOn is yet to be achieved. In this work, we explored high-power ultrasonication as a method to reduce particle size of GO and characterized the impact of the process on the physicochemical properties of the material. GOn was obtained with lateral dimensions of 99 ± 43 nm and surface charge of −39.9 ± 2.2 mV. High-power ultrasonication enabled an improvement of stability features, particularly by resulting in a decrease of the average particle size, as well as zeta potential, in comparison to GO obtained by low-power exfoliation and centrifugation (287 ± 139 nm; −29.7 ± 1.2 mV). Remarkably, GOn aqueous dispersions were stable for up to 6 months of shelf-time, with a global process yield of 74%. This novel method enabled the production of large volumes of highly concentrated (7.5 mg mL−1) GOn aqueous dispersions. Chemical characterization of GOn allowed the identification of characteristic oxygen functional groups, supporting high-power ultrasonication as a fast, efficient, and productive process for reducing GO lateral size, while maintaining the material’s chemical features.


CONVERTER ◽  
2021 ◽  
pp. 317-325
Author(s):  
Kai Xu, Jiafei Li, Yongming Zhang

It is an effective way to prepare alumina by replacing bauxite with aluminous minerals. It was studied that the preparation of spherical sub-micron alumina from Hainan kaolin by alginate assisted dispersion. The results of the experiment showed that the alumina content in Hainan kaolin is more than 38%. The t process parameters as of extracting alumina by acid leaching were optimized by uniform design optimization method. The alumina extraction rate reached more than 97% with optimized process conditions. It was used as aluminum source material that he aluminum salt obtained from Hainan kaolin was treated with impurity removal. With this source material, and the purified alginate AG was used as dispersant,the α- Alumina powder with good sphericity, uniform dispersion and average particle size of about 350 was prepared.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


Sign in / Sign up

Export Citation Format

Share Document