scholarly journals Preparation of aluminum-ferric-magnesium polysilicate and its application on oily sludge

2015 ◽  
Vol 80 (12) ◽  
pp. 1553-1565 ◽  
Author(s):  
Si Li ◽  
Shuang Yang ◽  
Pan Yi ◽  
Jin-Hui Zhang

Aluminum-ferric-magnesium polysilicate (PAFMS) was prepared by introducing aluminum, ferric and magnesium metal ions into Polymer silica acid solution. PAFMS was applied in the treatment of oily wastewater from treatment of oily sludge in this paper, and the coagulation performance was valued by the removal efficiency of turbidity and colority. The structure and morphology of PAFMS were characterized by the Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning Electronic Microscopy (SEM). The results indicated that mole ratios 6:4:15 of Al:Fe:Mg is beneficial to forming of Al-O-Si, Fe-O-Si and Mg-Si-O. Fe played main inhibition role among the three metals. XRD analysis showed that the addition of Al, Fe and Mg into Polysilicon acid did not produce a simple mixture, but resulted in the formation of new chemical structures. The intensity of peaks was influenced by the mole ratios of metals. SEM spectra presented that PAFMS appeared to be a spatial structure consisting of many irregular protuberant parts. The removal efficiency of turbidity and colority in oily water from the treatment of oily sludge was better when the mole ratio of (Al+Fe+Mg):Si was 0.5 and if the mole ratios of Al:Fe:Mg are kept at 6:4:15. Moreover, when the dosage of PAFMS was 1.4-1.8 % and the pH value in range of 8-9, the efficiency of turbidity and colority removal are up to 97.3 and 96.8%, respectively.

2009 ◽  
Vol 87-88 ◽  
pp. 345-350
Author(s):  
Jian Qiang Zhang ◽  
Hui Xia Feng ◽  
Jian Hui Qiu

The wet surface modification process were used in this work to get the well lipophilic molybdenum disulfide (MoS2) powders and the modified MoS2 were filled into the polyphenylene sulfide (PPS) and polypropylene (PP) powders with different proportions to make polymeric based composites through hot-press molding equipment. The Fourier transform infrared spectrometer (FT-IR) analysis showed that the modification agents of stearic acid (SA), orγ-Methacryloxypropyl trimethoxy silane(KH570 or A-174), could react with the adsorption hydroxyl(−OH) of the MoS2 powders and finally form chemical coatings, the SA could form a layer of physics wrap too. The powder X-ray diffraction (XRD) analysis reveled that the SA or KH570 could not change the laminated structure of MoS2. The wearability testing showed that the composites filled by modified MoS2 owned the better wearable performances than the filled not one. From minimum to maximum, the wear mass rates of SA/MoS2/PP/PPS, KH570/MoS2/PP/PPS, PP/PPS were 0.7216, 5.4187 and 7.3198 percent in turns. Scanning electronic microscope (SEM) analysis showed the surface modification could uniformize the modified MoS2 to disperse in the polymeric based composites, and also reflect the abrasion mechanism which the particles and the adhering wear modes could all make the mass loss of the testing samples and they coexisted and could transform each other, the former would produce higher loss rates than the later and their leader status would gradually change from the particles wear to the adhering wear during the course of wearing-resisting tests.


2013 ◽  
Vol 331 ◽  
pp. 448-451
Author(s):  
De Lin Sun ◽  
Xian Chun Yu

Discarded wood was liquefied with phenol to prepare the liquefication basic woodceramics (LBW). The effects of sintering temperature on the phase changes had discussed. The Fourier transform infrared (FT-IR) analysis showed that, as sintering temperature rose, the elements of H and O were excluded gradually, as well the circle C-C structure had formed. The X-ray diffraction (XRD) analysis indicated that higher sintering temperature could improve the microcrystal structure. With the temperature increasing, (002) diffraction peak became strong and the diffraction angle 2θbecame larger, meanwhile, the stacking height of larger plane and the crystallite size increased also. In addition, the distances of interlamination drop drown, and the rank of microcrystal became more regulation and order. Butgvalues which character the degree of graphitization always were less than zero, and the integrated graphite structure had not found, suggesting the LBW was a kind of a difficult graphitization material.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3474
Author(s):  
Katarzyna Uram ◽  
Milena Leszczyńska ◽  
Aleksander Prociak ◽  
Anna Czajka ◽  
Michał Gloc ◽  
...  

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections—parallel and perpendicular to the direction of the foam growth—while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2006 ◽  
Vol 118 ◽  
pp. 639-644
Author(s):  
Hye Sung Kim ◽  
Su Chak Ryu

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) powders is synthesized using the mixed powders of CaCO3 refined from oyster shells and phosphoric acid (H3PO4-98%, Daejung) as starting materials. The characteristic evaluation and chemical analysis of the synthesized powders is performed by X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICPAES). XRD analysis of synthetic powder by heat treatment at 1300°C for 2hrs shows only HAp peaks corresponding to stoichiometric HAp. It is confirmed by ICP-AES test that impurities such as Zn, In, Ti, Ba, Cd, Pb, and Mn, is not detected at all, but small amounts of Ti and Be is observed (0.099ppm Ti and 0.002ppm Ba). Variation of bone density is measured by giving medication of HAp powder with drinking water into human body continuously for three month. After the medication, the bone density is higher than the medication before. This means that HAp powder made from this process can be used as improver of bone density.


Cerâmica ◽  
2016 ◽  
Vol 62 (364) ◽  
pp. 386-391 ◽  
Author(s):  
J. R. M. Ferreira ◽  
L. H. L. Louro ◽  
A. M. Costa ◽  
J. B. de Campos ◽  
M. H. Prado da Silva

Abstract In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite.


Author(s):  
Nkosinathi Goodman Dlamini ◽  
Albertus Kotze Basson ◽  
Viswanadha Srirama Rajasekhar Pullabhotla

Nanotechnology offers a great opportunity for efficient removal of pollutants and pathogenic microorganisms in water. Copper nanoparticles were synthesized using a polysaccharide bioflocculant and its flocculation, removal efficiency, and antimicrobial properties were evaluated. The synthesized nanoparticles were characterized using thermogravimetry, UV-Visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscope (TEM). The highest flocculation activity (FA) was achieved with the lowest concentration of copper nanoparticles (0.2 mg/mL) with 96% (FA) and the least flocculation activity was 80% at 1 mg/mL. The copper nanoparticles (CuNPs) work well without the addition of the cation as the flocculation activity was 96% and worked best at weak acidic, neutral, and alkaline pH with the optimal FA of 96% at pH 7. Furthermore, the nanoparticles were found to be thermostable with 91% FA at 100 °C. The synthesized copper nanoparticles are also high in removal efficiency of staining dyes, such as safranin (92%), carbol fuchsine (94%), malachite green (97%), and methylene blue (85%). The high removal efficiency of nutrients such as phosphate and total nitrogen in both domestic wastewater and Mzingazi river water was observed. In comparison to ciprofloxacin, CuNPs revealed some remarkable properties as they are able to kill both the Gram-positive and Gram-negative microorganisms.


2017 ◽  
Vol 75 (8) ◽  
pp. 1776-1783 ◽  
Author(s):  
Jianhai Zhao ◽  
Huanhuan Shi ◽  
Meile Liu ◽  
Jingfang Lu ◽  
Wenpu Li

The utilization of magnesium hydroxide was successfully carried out to remove reactive orange by coagulation-adsorption from aqueous solution. The coagulation-adsorption mechanisms and magnesium hydroxide-reactive orange floc property were analyzed through zeta potential, scanning electron microscope (SEM), X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). Flocculation Index was then discussed with controlled experiments using intelligent Particle Dispersion Analyzer (iPDA) and optimum rapid mixing time of 90 s was obtained for pH 12. The results of this study indicate that charge neutralization and adsorption are proposed to be the main coagulation mechanisms. The FT-IR spectra and SEM showed that reactive orange was adsorbed on the magnesium hydroxide surface during coagulation and adsorption. Freshly generated magnesium hydroxide can effectively remove reactive orange and the removal efficiency can reach 96.7% and 46.3% for coagulation and adsorption, respectively. Adsorption process accounts for 48% of the whole coagulation experiment. The removal efficiency decreased significantly with increasing magnesium hydroxide formation time.


2017 ◽  
Vol 727 ◽  
pp. 280-283
Author(s):  
Xiao Ming Fu

Anatase TiO2 particles of about 20 nm in the diameter were successfully synthesized with Ti (SO4)2 as titanium source and stronger ammonia water as precipitant at 240°C for 48 h with pH=5 using the hydrothermal method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS). XRD analysis showed that the phase of the samples was anatase TiO2. TEM analysis confirmed that TiO2 particles of about 50 nm in the diameter were obtained when the pH value was 0.12. With the increasement of the pH value, the size of as-prepared TiO2 particles became remarkably fine. However, with the further increase of the pH value, the size of TiO2 particles was not obvious. TiO2 particles of about 20 nm in the diameter were obtained when the pH value was 5. And UV-VIS results showed that the size of anatase TiO2 nanoparticles, which became small, was propitious to the blue shift of their absorption peak.


Author(s):  
Marwan Marwan ◽  
Eti Indarti ◽  
Darmadi Darmadi ◽  
Wahyu Rinaldi ◽  
Dzikri Hamzah ◽  
...  

Triacetin, an alternative biodiesel additive, was prepared by esterification of glycerol with acetic acid in the presence of chemically activated natural zeolite. The esterification was carried out in a small reaction flask under microwave irradiation. The catalyst was characterized for its morphology by SEM and its chemical composition by X-ray Diffraction (XRD). The Scanning Electron Microscopy (SEM) micrograph indicates improved surface area of the zeolite, while the XRD analysis shows an increase in Si/Al ratio from natural zeolite to 6.042 and its crystallinity value of 12.23%. The Fourier Transform Infra Red (FTIR) analysis obtained showed that microwave-heated samples have an esters group spectrum of triacetin at 1702 cm-1. The conversion value of glycerol was more than 95% at molar ratio of the reactants 1:9 and catalyst loading of 3%. The selectivities for monoacetin, diacetin and triacetin were 80.1%, 15.4%, and 4.5% at 60 minutes, and 43.0%, 48.6%, and 8.3% at 90 minutes. It shows that the conversion took place in consecutive steps and the use of microwave allows the reaction proceeding at milder condition. Copyright © 2019 BCREC Group. All rights reserved 


Sign in / Sign up

Export Citation Format

Share Document