Effects of Sintering Temperature on the Phase Changes of Woodceramics Prepared from Liquefication Wood

2013 ◽  
Vol 331 ◽  
pp. 448-451
Author(s):  
De Lin Sun ◽  
Xian Chun Yu

Discarded wood was liquefied with phenol to prepare the liquefication basic woodceramics (LBW). The effects of sintering temperature on the phase changes had discussed. The Fourier transform infrared (FT-IR) analysis showed that, as sintering temperature rose, the elements of H and O were excluded gradually, as well the circle C-C structure had formed. The X-ray diffraction (XRD) analysis indicated that higher sintering temperature could improve the microcrystal structure. With the temperature increasing, (002) diffraction peak became strong and the diffraction angle 2θbecame larger, meanwhile, the stacking height of larger plane and the crystallite size increased also. In addition, the distances of interlamination drop drown, and the rank of microcrystal became more regulation and order. Butgvalues which character the degree of graphitization always were less than zero, and the integrated graphite structure had not found, suggesting the LBW was a kind of a difficult graphitization material.

2009 ◽  
Vol 87-88 ◽  
pp. 345-350
Author(s):  
Jian Qiang Zhang ◽  
Hui Xia Feng ◽  
Jian Hui Qiu

The wet surface modification process were used in this work to get the well lipophilic molybdenum disulfide (MoS2) powders and the modified MoS2 were filled into the polyphenylene sulfide (PPS) and polypropylene (PP) powders with different proportions to make polymeric based composites through hot-press molding equipment. The Fourier transform infrared spectrometer (FT-IR) analysis showed that the modification agents of stearic acid (SA), orγ-Methacryloxypropyl trimethoxy silane(KH570 or A-174), could react with the adsorption hydroxyl(−OH) of the MoS2 powders and finally form chemical coatings, the SA could form a layer of physics wrap too. The powder X-ray diffraction (XRD) analysis reveled that the SA or KH570 could not change the laminated structure of MoS2. The wearability testing showed that the composites filled by modified MoS2 owned the better wearable performances than the filled not one. From minimum to maximum, the wear mass rates of SA/MoS2/PP/PPS, KH570/MoS2/PP/PPS, PP/PPS were 0.7216, 5.4187 and 7.3198 percent in turns. Scanning electronic microscope (SEM) analysis showed the surface modification could uniformize the modified MoS2 to disperse in the polymeric based composites, and also reflect the abrasion mechanism which the particles and the adhering wear modes could all make the mass loss of the testing samples and they coexisted and could transform each other, the former would produce higher loss rates than the later and their leader status would gradually change from the particles wear to the adhering wear during the course of wearing-resisting tests.


2021 ◽  
Vol 37 (6) ◽  
pp. 648-658
Author(s):  
Ji Won Kim ◽  
Se Rin Park ◽  
Ki Ok Han ◽  
Seon Hwa Jeong

In this study, we aimed to analyze the chemical changes that occur in Korean paper in an accelerated deterioration environment of 105℃. We selected the Korean paper produced with different types of cooking agents (plant lye, Na2CO3) and during different manufacturing seasons (winter, summer). The degree of deterioration of the Korean paper was confirmed by measuring the brightness, yellowness, and pH level, and the degree of change in each vibrational region of cellulose as deterioration progressed through infrared (FT-IR) spectroscopy. The FT-IR analysis showed that, as deterioration progressed, the absorbance of the amorphous region in cellulose decreased, whereas the absorbance of the crystalline region slightly increased. X-Ray diffraction (XRD) analysis and Raman spectroscopy were performed to verify the changes in the crystalline and amorphous regions in cellulose indicated by the FT-IR results. Furthermore, the crystallinity index (CI) was calculated; it showed a slight increase after deterioration; therefore, CI was confirmed to follow the same trend as that observed for absorbance in the FT-IR results. In addition, as a result of Raman spectroscopic analysis, the degree of decomposition of the amorphous region in the cellulose under the manufacturing conditions was confirmed by the fluorescence measured after the deterioration.


2015 ◽  
Vol 80 (12) ◽  
pp. 1553-1565 ◽  
Author(s):  
Si Li ◽  
Shuang Yang ◽  
Pan Yi ◽  
Jin-Hui Zhang

Aluminum-ferric-magnesium polysilicate (PAFMS) was prepared by introducing aluminum, ferric and magnesium metal ions into Polymer silica acid solution. PAFMS was applied in the treatment of oily wastewater from treatment of oily sludge in this paper, and the coagulation performance was valued by the removal efficiency of turbidity and colority. The structure and morphology of PAFMS were characterized by the Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning Electronic Microscopy (SEM). The results indicated that mole ratios 6:4:15 of Al:Fe:Mg is beneficial to forming of Al-O-Si, Fe-O-Si and Mg-Si-O. Fe played main inhibition role among the three metals. XRD analysis showed that the addition of Al, Fe and Mg into Polysilicon acid did not produce a simple mixture, but resulted in the formation of new chemical structures. The intensity of peaks was influenced by the mole ratios of metals. SEM spectra presented that PAFMS appeared to be a spatial structure consisting of many irregular protuberant parts. The removal efficiency of turbidity and colority in oily water from the treatment of oily sludge was better when the mole ratio of (Al+Fe+Mg):Si was 0.5 and if the mole ratios of Al:Fe:Mg are kept at 6:4:15. Moreover, when the dosage of PAFMS was 1.4-1.8 % and the pH value in range of 8-9, the efficiency of turbidity and colority removal are up to 97.3 and 96.8%, respectively.


2016 ◽  
Vol 16 (4) ◽  
pp. 3969-3972 ◽  
Author(s):  
Yongde Meng ◽  
Yanjie Sun

In the present study, biosynthesis of silver nanoparticles was carried out using Rosa chinensis flower extract as reducing agent. The characterization of silver nanoparticles was done by UV-VIS spectrum. The morphology and size of silver nanoparticles were determined by transmission electron microscope (TEM) image. The crystallization of silver nanoparticles was confirmed by X-ray diffraction (XRD) measurements. The Fourier transform infrared (FT-IR) analysis was used to confirm the possible involvement in the formation and stabilization of synthesized silver nanoparticles by the extract of Rosa chinensis flower. Antibacterial activity of silver nanoparticles was studied against Gram positive Staphycoccus aureus and Gram negative Escherichia coli.


2021 ◽  
Vol 21 (4) ◽  
pp. 2212-2220
Author(s):  
T. S. Gokul Raja ◽  
S. Balamurugan ◽  
A. Reshma

In this work, several attempts were made to prepare nanoceramic zirconate (Nd2Zr2O7) powder for pigment applications. The single pyrochlore phase, Nd2Zr2O7 was successfully synthesized with the aid of flux at relatively low temperature (1000 °C) upon milling the reaction mixture made from Nd2O3 and ZrO2 in a tungsten carbide vial. Several characterizations were done on the thermal analysis (TG/DTA), X-ray diffraction (XRD), High-resolution scanning electron microscope (HRSEM), energy dispersive X-ray (EDX) analysis, Fourier-transform infrared (FT-IR) analysis, and near-infrared (NIR spectroscopy). A single-phase nanocrystalline (˜28 nm) pyrochlore structure (Fd3m) was confirmed through XRD analysis. A highly uniform particle in the size of ˜110 nm was observed for the Nd2Zr2O7 phase in the microimages. The vibrational (FT-IR) peaks at 423 cm-1 and 510 cm-1 in FTIR spectroscopic study confirmed the formation of pyrochlore structure. Higher NIR reflectivity recorded for this material in the 750–2500 nm region shows its novel application in color cool pigments for energy-saving paints reminiscent of Bi2−xYxCe2O7, Bi2Ce2−xTbxO7, and Gd2Ti2O7.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3474
Author(s):  
Katarzyna Uram ◽  
Milena Leszczyńska ◽  
Aleksander Prociak ◽  
Anna Czajka ◽  
Michał Gloc ◽  
...  

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections—parallel and perpendicular to the direction of the foam growth—while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2006 ◽  
Vol 118 ◽  
pp. 639-644
Author(s):  
Hye Sung Kim ◽  
Su Chak Ryu

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) powders is synthesized using the mixed powders of CaCO3 refined from oyster shells and phosphoric acid (H3PO4-98%, Daejung) as starting materials. The characteristic evaluation and chemical analysis of the synthesized powders is performed by X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICPAES). XRD analysis of synthetic powder by heat treatment at 1300°C for 2hrs shows only HAp peaks corresponding to stoichiometric HAp. It is confirmed by ICP-AES test that impurities such as Zn, In, Ti, Ba, Cd, Pb, and Mn, is not detected at all, but small amounts of Ti and Be is observed (0.099ppm Ti and 0.002ppm Ba). Variation of bone density is measured by giving medication of HAp powder with drinking water into human body continuously for three month. After the medication, the bone density is higher than the medication before. This means that HAp powder made from this process can be used as improver of bone density.


2017 ◽  
Vol 867 ◽  
pp. 19-28 ◽  
Author(s):  
J. Lakshmipathy ◽  
Subburaj Rajesh Kannan ◽  
K. Manisekar ◽  
S. Vinoth Kumar

In this article, an attempt was made to study the mechanical behaviour of AA7068 - 6 vol. % of MoS2 - X vol. % of WC (X = 0, 5, 10 and 15) hybrid aluminium composites produced by blend–press–sinter methodology. Compacted Powders (700MPa) were sintered at different temperatures (450 0c, 500 0c and 550 0c ) in order to find the influence of sintering temperature on mechanical properties and tribological behavior of AA7068 hybrid composites.The sintered samples have been characterized by x-ray diffraction (XRD) method for identification of phases and also to investigate the phase changes. The change in density, hardness and porosity values of composites were reported. The composite with 15 vol. % of tungsten carbide and 6 vol. % of MoS2 showed the highest hardness and density at the sintering temperature range of 550 0c. Pin-on-disc type apparatus was used for determining the wear loss occurring at different conditions. The hybridization of the two reinforcements enhanced the wear resistance of the composites, especially under high applied load, sliding distance and sliding speeds. Due to this, the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors. The morphology of the wear debris and the worn out surfaces were analyzed to understand the wear mechanisms.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 896 ◽  
Author(s):  
Qiqi Fan ◽  
Guangping Han ◽  
Wanli Cheng ◽  
Huafeng Tian ◽  
Dong Wang ◽  
...  

In this work, an easy way to prepare the polylactic acid (PLA)/wheat straw fiber (WSF) composite was proposed. The method involved uses either the dopamine-treated WSF or the two-step montmorillonite (MMT)-modified WSF as the filler material. In order to achieve the dispersibility and exfoliation of MMT, it was modified by 12-aminododecanoic acid using a two-step route. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the modified MMT and the coated WSF. As for the properties of PLA/WSF composites, some thermal (using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis) and mechanical properties (flexural, tensile, and impact) were analyzed. The results showed that the dopamine was successfully coated onto the WSF. Furthermore, Na-MMT was successfully transformed to organo-montmorillonite (OMMT) and formed an exfoliated structure. In addition, a better dispersion of MMT was obtained using the two-step treatment. The interlayer spacing of modified MMT was 4.06 nm, which was 123% higher than that of the unmodified MMT. Additionally, FT-IR analysis suggested that OMMT diffused into the PLA matrix. The thermogravimetric analysis (TGA) showed that a higher thermal stability of PLA/WSF composites was obtained for the modified MMT and dopamine. The results also showed that both the dopamine treated WSF and the two-step-treated MMT exhibited a positive influence on the mechanical properties of PLA/WSF composites, especially on the tensile strength, which increased by 367% compared to the unmodified precursors. This route offers researchers a potential scheme to improve the thermal and mechanical properties of PLA/WSF composites in a low-cost way.


Sign in / Sign up

Export Citation Format

Share Document