scholarly journals Nanomaterials - what energy landscapes can tell us

2015 ◽  
Vol 9 (3) ◽  
pp. 157-168 ◽  
Author(s):  
Johann Schön

Nanomaterials bridge the gaps between crystalline materials, thin films, and molecules, and are of great importance in the design of new classes of materials, since the existence of many modifications of a nano-object for the same overall composition allows us to tune the properties of the nanomaterial. However, the structural analysis of nano-size systems is often difficult and their structural stability is frequently relatively low. Thus, a study of their energy landscape is needed to determine or predict possible structures, and analyse their stability, via the determination of the minima on the landscape and the generalized barriers separating them. In this contribution, we introduce the major concepts of energy landscapes for chemical systems, and present summaries of four applications to nano-materials: a MgO monolayer on a sapphire substrate, possible quasitwo- dimensional carbon-silicon networks, the ab initio energy landscape of Cu4Ag4-clusters, and the possible arrangements of ethane molecules on an ideally smooth substrate.

2011 ◽  
Vol 279 (1730) ◽  
pp. 975-980 ◽  
Author(s):  
Rory P. Wilson ◽  
Flavio Quintana ◽  
Victoria J. Hobson

Variation in the physical characteristics of the environment should impact the movement energetics of animals. Although cognizance of this may help interpret movement ecology, determination of the landscape-dependent energy expenditure of wild animals is problematic. We used accelerometers in animal-attached tags to derive energy expenditure in 54 free-living imperial cormorants Phalacrocorax atriceps and construct an energy landscape of the area around a breeding colony. Examination of the space use of a further 74 birds over 4 years showed that foraging areas selected varied considerably in distance from the colony and water depth, but were characterized by minimal power requirements compared with other areas in the available landscape. This accords with classic optimal foraging concepts, which state that animals should maximize net energy gain by minimizing costs where possible and show how deriving energy landscapes can help understand how and why animals distribute themselves in space.


Author(s):  
J.C. Schön ◽  
Martin Jansen

AbstractIn the past decade, new theoretical approaches have been developed to determine, predict and understand the struc-ture of chemical compounds. The central element of these methods has been the investigation of the energy landscape of chemical systems. Applications range from extended crystalline and amorphous compounds over clusters and molecular crystals to proteins. In this review, we are going to give an introduction to energy landscapes and methods for their investigation, together with a number of examples. These include structure prediction of extended and mo-lecular crystals, structure prediction and folding of proteins, structure analysis of zeolites, and structure determination of crystals from powder diffraction data.


Author(s):  
J. C. Schön ◽  
Martin Jansen

AbstractIn the past decade, new theoretical approaches have been developed to determine, predict and understand the struc-ture of chemical compounds. The central element of these methods has been the investigation of the energy landscape of chemical systems. Applications range from extended crystalline and amorphous compounds over clusters and molecular crystals to proteins. In this review, we are going to give an introduction to energy landscapes and methods for their investigation, together with a number of examples. These include structure prediction of extended and mo-lecular crystals, structure prediction and folding of proteins, structure analysis of zeolites, and structure determination of crystals from powder diffraction data.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolaos Vasios ◽  
Bolei Deng ◽  
Benjamin Gorissen ◽  
Katia Bertoldi

AbstractMulti-welled energy landscapes arising in shells with nonzero Gaussian curvature typically fade away as their thickness becomes larger because of the increased bending energy required for inversion. Motivated by this limitation, we propose a strategy to realize doubly curved shells that are bistable for any thickness. We then study the nonlinear dynamic response of one-dimensional (1D) arrays of our universally bistable shells when coupled by compressible fluid cavities. We find that the system supports the propagation of bidirectional transition waves whose characteristics can be tuned by varying both geometric parameters as well as the amount of energy supplied to initiate the waves. However, since our bistable shells have equal energy minima, the distance traveled by such waves is limited by dissipation. To overcome this limitation, we identify a strategy to realize thick bistable shells with tunable energy landscape and show that their strategic placement within the 1D array can extend the propagation distance of the supported bidirectional transition waves.


Sign in / Sign up

Export Citation Format

Share Document