scholarly journals Viking Age Swords from Telemark, Norway: An Integrated Technical and Archaeological Investigation

2021 ◽  
Author(s):  
Irmelin Martens ◽  
Eva Elisabeth Astrup ◽  
Kjetil Loftsgarden ◽  
Vegard Vike

Viking Age Swords from Telemark, Norway. An Integrated Technical and Archaeological Investigation provides a metallographic analysis of 21 Viking Age swords found in the county Telemark in southeastern Norway. The book is the result of a collaboration between archaeologist Irmelin Martens and chemist Eva Elisabeth Astrup. 220 swords have been found in Telemark, and they are a mix of domestic Norwegian and imported European types. The difficulties in determining which ones were made in Norway are complicated by and closely connected to the specific skills Norwegian blacksmiths had mastered with respect to both blade construction and inlay decoration. The metallographic investigations revealed five construction types for sword blades, of which four, requiring different technical levels of smithing, may well have been mastered by Norwegian blacksmiths at that time. Combined with x-ray radiographic studies, the metallographic investigations indicate that new techniques were indeed introduced and disseminated among weaponsmiths during the Viking Age. The findings are also probably representative for the combined total of more than 3000 swords found in all areas of the country. The majority are domestic types, and their great number obviously reflects the organization of sword production and influenced blacksmiths’ social standing.

2015 ◽  
Vol 638 ◽  
pp. 310-315
Author(s):  
George Coman ◽  
Sorin Ciuca ◽  
Mirela Sohaciu ◽  
Ecaterina Matei ◽  
Andra Predescu ◽  
...  

The paper presents the investigations made on samples taken from the related rotor blade of an hospital cooling equipment.The failure analysis was made in order to find if the failure appear because the metallic material used or was functional problem.The objectives of our analysis and techniques used are described below:determining the chemical composition by optical emission spectrometry;determining the hardness of the material;metallographic analysis by optical microscopy;micro compositional and microstructural analysis by scanning electron microscopy (SEM) and by microanalysis, energy dispersive X-ray (EDAX). Research has highlighted the quality of piece elaboration and casting, which led to a long life of its use.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
Imre Pozsgai ◽  
Klara Erdöhalmi-Torok

The paintings by the great Hungarian master Mihaly Munkacsy (1844-1900) made in an 8-9 years period of his activity are deteriorating. The most conspicuous sign of the deterioration is an intensive darkening. We have made an attempt by electron beam microanalysis to clarify the causes of the darkening. The importance of a study like this is increased by the fact that a similar darkening can be observed on the paintings by Munkacsy’s contemporaries e.g Courbet and Makart. A thick brown mass the so called bitumen used by Munkacsy for grounding and also as a paint is believed by the art historians to cause the darkening.For this study, paint specimens were taken from the following paintings: “Studio”, “Farewell” and the “Portrait of the Master’s Wife”, all of them are the property of the Hungarian National Gallery. The paint samples were embedded in a polyester resin “Poly-Pol PS-230” and after grinding and polishing their cross section was used for x-ray mapping.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


2011 ◽  
Vol 75 (1) ◽  
pp. 288-300 ◽  
Author(s):  
Nicholas L. Balascio ◽  
Zhaohui Zhang ◽  
Raymond S. Bradley ◽  
Bianca Perren ◽  
Svein Olaf Dahl ◽  
...  

AbstractThis study takes a comprehensive approach to characterizing the isolation sequence of Heimerdalsvatnet, a coastal lake in the Lofoten Islands, northern Norway. We use established methods and explore new techniques to assess changes in marine influence. Bathymetric and sub-bottom profiles were acquired to examine basin-wide sedimentation and a 5.8 m sediment core spanning the last 7800 cal yr BP was analyzed. We measured magnetic susceptibility, bulk organic matter properties, molecular biomarkers, diatom assemblages, and elemental profiles acquired by scanning X-ray fluorescence. These characteristics of the sediment reflect detailed changes in salinity and water column conditions as the lake was progressively isolated. Three distinct litho/chemo-stratigraphic units represent a restricted marine phase (7800–6500 cal yr BP), a transitional phase characterized by intermittent marine influence (6500–4900 cal yr BP), and complete isolation and freshwater sedimentation (4900 cal yr BP to present). Although there are uncertainties in the estimate of the threshold elevation of the lake, the timing of these phases generally corresponds with previous interpretations of the local relative sea-level history. This record captures sea-level regression following the Tapes transgression and supports the interpretation of a subsequent sea-level stillstand, dated in Heimerdalsvatnet from 6500 to 4900 cal yr BP.


2011 ◽  
Vol 11 (3) ◽  
pp. 184-188
Author(s):  
Syed F. Akber ◽  
Than S. Kehwar

AbstractThe partial volume (spatial) response of four ionization chambers (Keithley) in kilovoltage X-ray beams, generated by the Philips Super 80CP X-ray unit, was assessed. The volume of the ionization chambers were of 10 cm3, 15 cm3, 150 cm3, and 600 cm3 used with Keithley electrometer Model 35040. The beam output was measured using a monitor chamber (Radcal 6.0 cm3) placed close to the collimator. The source to chamber distance was kept constant at 1 m. For the measurement of the response of ionization chambers of 15 cm3, 150 cm3, and 600 cm3, a slit of 2.0 mm width was made in a lead sheet of 3.2 mm thick and size of 30 × 30 cm2 and was placed on the ionization chamber. The measurements were made for 81 kVp, 400 mA, and 0.25 s and the slit was moved at an increment of 2.0 mm over the entire length of the chamber. For the measurements of the ionization chamber of 10 cm3 (CT chamber), the beams of 120 kVp, 200 mA and 0.2 s were generated, and a slit of 5 mm width was made in a similar lead sheet that was moved at an increment of 5.0 mm. From the result it appears that the sensitive volumes of the ionization chambers affect the response of the ionization chamber to incident radiation.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Khalil Ibrahim ◽  
Mohammad Moumani ◽  
Salsabeela Mohammad

A combined process is proposed for the utilization of local kaolin to produce alumina particles. The applied process is made in two stages: calcination at 700 °C with sodium chloride and leaching with sulfuric followed by hydrochloric acids. The optimal extraction efficiency can be obtained when the conditions are as follows: leaching temperature is at 140 °C, leaching time is 3 h 45 min and concentration of sulfuric acid is 40 wt.%. The results show that the purity of alumina reaches 79.28%, which is suitable for the production of aluminum metal. It is evident that this method of extraction of alumina from the kaolin ash is practical and feasible. The structural and morphological properties of the calcined microcrystalline powder was characterized by X-ray diffraction and scanning electron microscope (SEM).


1985 ◽  
Vol 95 (3) ◽  
pp. 611-618
Author(s):  
Naomi Datta

SUMMARYThe study of Escherichia coli and its plasmids and bacteriophages has provided a vast body of genetical information, much of it relevant to the whole of biology. This was true even before the development of the new techniques, for cloning and analysing DNA, that have revolutionized biological research during the past decade. Thousands of millions of dollars are now invested in industrial uses of these techniques, which all depend on discoveries made in the course of academic research on E. coli. Much of the background of knowledge necessary for the cloning and expression of genetically engineered information, as well as the techniques themselves, came from work with this organism.


Sign in / Sign up

Export Citation Format

Share Document