scholarly journals Effects of a radio frequency electromagnetic field on honey bee larvae (Apis mellifera) differ in relation to the experimental study design

2021 ◽  
Vol 91 (4) ◽  
pp. 427-435
Author(s):  
Marinko Vilić ◽  
◽  
Ivona Žura Žaja ◽  
Mirta Tkalec ◽  
Anamaria Štambuk ◽  
...  

Exposure to radiofrequency electromagnetic fields (RF-EMF) at the operating frequencies of different communication devices can cause various biological effects. However, there is a lack of studies on the oxidative stress response and genotoxicity in the honey bee (Apis mellifera) after exposure to RF-EMF. In this study, we investigated the oxidative stress and DNA damage in honey bee larvae situated in waxcomb cells, exposed to modulated RF-EMF 23 Vm-1. The glutathione S-transferase activity decreased, whereas the catalase activity increased significantly in the honey bee larvae upon RF-EMF exposure. Superoxide dismutase activity, the level of lipid peroxidation, and DNA damage were not statistically altered in exposed honey bee larvae when compared to the control group. These results suggest that the biological effects of modulated RF-EMF in honey bee larvae depend on the exposure design.

2017 ◽  
Vol 15 (4) ◽  
Author(s):  
Bárbara Louise L. Tuzuki ◽  
Frederico Augusto C. Delunardo ◽  
Luciana N. Ribeiro ◽  
Caroliny P. de Melo ◽  
Levy Carvalho Gomes ◽  
...  

ABSTRACT This study evaluates the effects of exposure to manganese (Mn2+) for 96 hours at two different temperatures (24 and 27°C) on juveniles of Centropomus parallelus through the activities of glutathione S-transferase (GST) and catalase (CAT), micronuclei test (MN) and comet assay. The GST activity did not show any significant difference between the groups exposed to Mn2+ and the respective control groups; in contrast, a major increase in the CAT activity was observed at 27°C in the group exposed to Mn2+ compared to the control group. The genotoxic analyses showed that in all animals exposed to Mn2+, the number of red cells with micronuclei increased significantly compared to the respective control groups. There was also a significant increase in the incidence of DNA damage in the groups exposed to Mn2+. At a temperature of 24ºC, animals exposed to Mn2+ had more DNA damage than those at 27°C. It is likely that the increase in temperature can also induce oxidative stress. Thus, we conclude that manganese is toxic to the fat snook juveniles, causing genotoxic damage, and when associated with an increase in temperature, manganese can also provoke an increase in oxidative stress.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1850
Author(s):  
Jinlong Wei ◽  
Qin Zhao ◽  
Yuyu Zhang ◽  
Weiyan Shi ◽  
Huanhuan Wang ◽  
...  

This article mainly observed the protective effect of sulforaphane (SFN) on radiation-induced skin injury (RISI). In addition, we will discuss the mechanism of SFN’s protection on RISI. The RISI model was established by the irradiation of the left thigh under intravenous anesthesia. Thirty-two C57/BL6 mice were randomly divided into control group (CON), SFN group, irradiation (IR) group, and IR plus SFN (IR/SFN) group. At eight weeks after irradiation, the morphological changes of mouse skin tissues were detected by H&E staining. Then, the oxidative stress and inflammatory response indexes in mouse skin tissues, as well as the expression of Nrf2 and its downstream antioxidant genes, were evaluated by ELISA, real-time PCR, and Western blotting. The H&E staining showed the hyperplasia of fibrous tissue in the mouse dermis and hypodermis of the IR group. Western blotting and ELISA results showed that the inflammasome of NLRP3, caspase-1, and IL-1β, as well as oxidative stress damage indicators ROS, 4-HNE, and 3-NT, in the skin tissues of mice in the IR group were significantly higher than those in the control group (p < 0.05). However, the above pathological changes declined sharply after SFN treatment (p < 0.05). In addition, the expressions of Nrf2 and its regulated antioxidant enzymes, including CAT and HO-1, were higher in the skin tissues of SFN and IR/SFN groups, but lower in the control and IR groups (p < 0.05). SFN may be able to suppress the oxidative stress by upregulating the expression and function of Nrf2, and subsequently inhibiting the activation of NLRP3 inflammasome and DNA damage, so as to prevent and alleviate the RISI.


2013 ◽  
Vol 59 (4) ◽  
pp. 443-451 ◽  
Author(s):  
E.A. Kosenko ◽  
L.A. Tikhonova ◽  
A.C. Poghosyan ◽  
Y.G. Kaminsky

Age of patients and brain oxidative stress may contribute to pathogenesis of Alzheimer's disease (AD). Erythrocytes (red blood cells, RBC) are considered as passive “reporter cells” for the oxidative status of the whole organism and are not well studied in AD. The aim of this work was to assess whether the antioxidant status of RBC changes in aging and AD. Blood was taken from AD and non-Alzheimer's dementia patients, aged-matched and younger controls. In vivo antioxidant status was assessed in each of the study subjects by measuring RBC levels of Н О , organic hydroperoxides, glutathione (GSH) and glutathione disulfide (GSSG), activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase. In both aging and dementia, oxidative stress in RBC was shown to increase and to be expressed in elevated concentrations of H O and organic hydroperoxides, decreased the GSH/GSSG ratio and glutathione S-transferase activity. Decreased glutathione peroxidase activity in RBC may be considered as a new peripheral marker for Alzheimer’s disease while alterations of other parameters of oxidative stress reflect age-related events.


2011 ◽  
Vol 34 (3) ◽  
pp. 163 ◽  
Author(s):  
Omur Tabak ◽  
Remise Gelisgen ◽  
Hayriye Erman ◽  
Fusun Erdenen ◽  
Cüneyt Muderrisoglu ◽  
...  

Purpose: The purpose of this study was to determine the effects of diabetic complications on oxidation of proteins, lipids, and DNA and to investigate the relationship between oxidative damage markers and clinical parameters. Methods: The study group consisted of 69 type 2 diabetic patients (20 patients without complication, 49 patients with complication) who attended internal medicine outpatient clinics of Istanbul Education and Research Hospital and 19 healthy control subjects. In serum samples of both diabetic patients and healthy subjects, 8-hydroxy-2’deoxyguanosine (8-OHdG), as a marker of oxidative DNA damage, Nε-(hexanoyl)lysine (HEL) and 15-F2t-iso-prostaglandin (15-F2t-IsoP). as products of lipooxidative damage, advanced oxidation protein products (AOPP), as markers of protein damage, and paraoxonase1 (PON1) as antioxidant were studied. Results: 15-F2t-IsoP (p < 0.005) and AOPP (p < 0.001) levels were significantly higher in diabetic group than control group while there were no significant differences in levels of 8-OHdG and HEL between the two groups. AOPP (p < 0.001) and 8-OHdG (p < 0.001) were significantly higher in diabetic group with complications compared to diabetic group without complications. Conclusions: Increased formation of free radicals and oxidative stress, under conditions of hyperglycaemia, is one of the probable causes for evolution of complications in diabetes mellitus. Our study supports the hypothesis that oxidant/antioxidant balance is disturbed in diabetic patients.


2019 ◽  
Vol 8 (5) ◽  
pp. 741-753 ◽  
Author(s):  
Israa F. Mosa ◽  
Mokhtar I. Yousef ◽  
Maher Kamel ◽  
Osama F. Mosa ◽  
Yasser Helmy

Abstract Hydroxyapatite nanoparticles (HAP-NPs) are an inorganic component of natural bone and are mainly used in the tissue engineering field due to their bioactivity, osteoconductivity, biocompatibility, non-inflammatory, and non-toxicity properties. However, the current toxicity data for HAP-NPs regarding human health are limited, and only a few results from basic studies have been published. Therefore, the present study was designed to investigate the beneficial role of chitosan nanoparticles (CsNPs) and curcumin nanoparticles (CurNPs) in alleviating nephrotoxicity induced by HAP-NPs in male rats. The results showed that HAP-NPs caused a reduction in antioxidant enzymes and induced lipid peroxidation, nitric oxide production and DNA oxidation. Moreover, HAP-NP administration was associated with intense histologic changes in kidney architecture and immunoreactivity to proliferating cell nuclear antigen (PCNA). However, the presence of CsNPs and/or CurNPs along with HAP-NPs reduced the levels of oxidative stress through improving the activities of antioxidant enzymes. Also, the rats administered the nanoparticles showed a moderate improvement in glomerular damage which matched that of the control group and showed mild positive reactions to PCNA–ir in glomeruli and renal tubules in the cortical and medullary portions. These novel insights confirm that the presence of chitosan and curcumin in nanoforms has powerful biological effects with enhanced bioactivity and bioavailability phenomena compared to their microphase counterparts. Also, they were able to ameliorate the nephrotoxicity induced by HAP-NPs.


2018 ◽  
Vol 10 (4) ◽  
pp. 460-465
Author(s):  
Patrick E. ABA ◽  
Ifeanyi E. UZOCHUKWU ◽  
Nelson I. OSSAI ◽  
Ifeanyi G. EKE

Sodium propanoate is in the list of approved feed preservatives. However, there is dearth of information on its biological effects on the C. gariepinus. The present study investigated the effect of sodium propanoate-preserved feed on the hepatic histomorphometric changes, oxidative stress and inflammatory parameters of C. gariepinus juveniles. One hundred juveniles of mixed sexes, assigned into 5 groups of 20 fish per group, with each group consisting of 2 replicates of 10 fish, were used for the investigation. Group A juveniles were fed basal diet, while groups B-E received basal diet incorporated with sodium propanoate at the rate of 25, 50, 75 and 100 g/15 kg of feed respectively. Treatments were done two times daily for 8 weeks. Samples (sera and liver) were collected on the last day for evaluation of a few biochemical parameters (malondialdehyde values, catalase activity, C-reactive protein levels) and histomorphometric alterations in the liver. Results indicated that fish in groups D and E had higher catalase activities, lower serum levels of C-reactive proteins and an intact hepatic histomorphormetry when compared with the control group. There was no significant difference in the plasma malondialdehyde values in all the groups. It was concluded that preservation of fish feed with sodium propanoates improved antioxidant status of C. gariepinus and protected liver histology.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tarfa Albrahim ◽  
Manal Abdulaziz Binobead

It is common for food to be made more palatable through the use of the flavour enhancer monosodium glutamate, also known as vetsin powder. The purpose of the study described in this paper was to explore how vetsin-induced hepatic toxicity, DNA fragmentation, damage, and oxidative stress modifications could be mitigated with moringa leaf extract (MLE). To that end, 40 male rats were separated into four groups: normal control, positive control or MLE, vetsin, and vetsin combined with MLE. Results indicated that, compared to the control group, the levels of serum alanine aminotransferase (ALT), aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), liver malondialdehyde (MDA), DNA damage, injury, PCNA, and P53 expressions were significantly enhanced by the administration of vetsin (P<0.05). However, the vetsin group had significantly reduced levels of albumin, globulin, total protein, liver glutathione (GSH), superoxide dismutase enzyme (SOD), catalase, and glutathione S-transferase (GST) enzyme activities (P<0.05) by comparison to control. Meanwhile, modifications in liver functions, oxidative stress, DNA damage, liver injury, and PCNA expression were alleviated when vetsin was administered alongside MLE. The authors conclude that vetsin may have many side effects and that MLE can ameliorate biochemical changes, oxidative stress, hepatic injury, PCNA, and P53 alterations induced by vetsin administration.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Erdal Simsek ◽  
Gulcin Simsek ◽  
Mehmet Fazıl Tolga Soyal ◽  
Pinar Kaygin ◽  
Ali Cemal Duzgun ◽  
...  

AbstractObjectiveCytochrome P450 (CYP)1A1, glutathione S-transferase pi (GSTP1) and omega (GSTO1) isozymes were evaluated and compared in patients with the diagnosis of rheumatic mitral valve disease and ischemic mitral valve insufficiency to find out the relationship of the oxidative stress with rheumatic mitral valve disease.Materials and methodsThe control group consisted of patients operated on due to ischemic mitral valve insufficiency (group I, n:14) while study group consisted of the patients operated on with the diagnosis of rheumatic mitral valve disease (group II, n:29). Mitral valve materials were stained with hematoxylin and eosin. CYP1A1, GSTP1, and GSTO1 immunohistochemical markers were studied.Results20.7% of GSTP1 isozyme protein expression was seen in the study group; however, no expression was detected in the control group. This finding was statistically significant in terms of GSTP1 isozyme. No statistically significant differences in the level of GSTO1 and CYP1A1 protein expression between the study and control groups were observed.ConclusionIn this study, we found out that GSTP1 isozyme may be related to rheumatic mitral valve disease. A strategy that would help prevent oxidative stress in patients with rheumatic mitral valve disease can be a so valuable means to affect disease progression.


2018 ◽  
Vol 90 (5) ◽  
pp. 1-6
Author(s):  
Mariusz Deska ◽  
Oliwia Segiet ◽  
Ewa Romuk ◽  
Grzegorz Buła ◽  
Joanna Polczyk ◽  
...  

Background: Primary hyperparathyroidism (PHPT) is one of the most common endocrine disorders and defined as excessive secretion of parathormone. PHPT is a risk factor of several cardiovascular diseases, which could be caused by alterations in oxidant-antioxidant balance. Materials and methods: Blood serum collected from 52 consecutive patients with PHPT treated surgically constituted our study material, whereas 36 healthy volunteers were our control group. Oxidative stress was evaluated in both patients and control subjects by assessment of malondialdehyde (MDA) and lipid hydroperoxides (LHP). Antioxidants were evaluated by the measurement of superoxide dismutase (SOD), ceruloplasmin (CER), catalase (CAT), sulfhydryl (SH) groups, glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione transferase activity (GST) and glutathione reductase (GR). Moreover total antioxidant capacity (TAC) and total oxidative status (TOS) were measured and oxidative stress index (OSI) was calculated. Results: OSI was increased in patients with PHPT when compared to normal controls, whereas TAC was lower in PHPT. The levels of CER, MnSOD, GR, SH groups and MDA were significantly decreased in PHPT. The levels of serum LHP, catalase and SOD were significantly higher in patients with PHPT than in healthy patients. The erythrocyte CAT activity and GST were significantly increased in patients after parathyroidectomy. The erythrocyte GR and GPx were up-regulated postoperatively, whereas SOD activity decreased. Conclusions: In PHPT there are several alterations in the balance between the production of reactive oxygen species and antioxidant defense system.


Sign in / Sign up

Export Citation Format

Share Document