scholarly journals Using low-temperature technologies to prevent emergency situations at sea and rivers during extraction, production and transportation of hydrocarbon raw materials

Author(s):  
Mikhail Fedorovich Rudenko ◽  
Yulia Victorovna Shipulina ◽  
Alexandra Mikhailovna Rudenko

The paper highlights the chemically hazardous objects of marine and river infrastructure: offshore drilling platforms and oil production platforms; pipelines transporting liquid and gaseous hydrocarbon fuels along the sea bottom and above the ground; marine tankers transporting oil, fuel oil, gaseous and liquid ammonia; coastal terminals handling and shipping hydrocarbon raw materials, distillation products; gas producing plants and oil refineries; storage facilities for chemi-cally hazardous substances, etc. There are proposed new technologies for combating oil emissions during deep-water drilling, as well as for safe ways of transporting hydrocarbons through subsea pipelines and by oil tankers. These technologies are based on the methods of using low-temperature freons and cryogenic liquids. There are considered the methods of using machine cooling technologies, where the cascade refrigeration units work on various refrigerants, as well as using solid carbon dioxide and liquid nitrogen. Liquid nitrogen having a low boiling point (about minus 196C) has a higher rate of seawater freezing and forms stable ice layers on flat and cylindrical surfaces. There are given the examples of the experimental data to determine the growth rate of ice in the water frozen by liquid nitrogen. There has been given the chart of an underwater cryo-cuvette consisting of a metal panel with sockets, heat-insulated barrels, a tank for storing liquid nitrogen, a nozzle for filling the cryoagent, adjusting eyebolts, an object for freezing and transportation, and a safety valve. The underwater cryo-cuvette is designed to work with barrel-shaped objects. Envi-ronmental safety of transportation and production of natural hydrocarbon raw materials is signifi-cantly improved in the course of operation of the new technologies.

2020 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Danurdara Setiamukti ◽  
Azmi Khusnani ◽  
Moh. Toifur

Increased export-import activities on fresh food commodities in the international market led to the idea of developing new technologies in the form of cryogenic freezers using liquid nitrogen (LN2). Along with the development of preservation methods using liquid nitrogen media, we need a tool that is able to detect changes in low temperatures in LN2 storage flasks that have economic value. Therefore the purpose of this research is to make a low-temperature sensor with copper and nickel material that has an economical price. The Cu/Ni film sensor is made with an electroplating method assisted by an external magnetic field of 200 G which is installed parallel to the deposition current. The Cu/Ni film was developed by varying the concentration of the electrolyte solution. The electrolyte solution used in the deposition process consisted of a mixture of H3BO3, NiSO4, NiCl2, and H2O. Furthermore, the Cu/Ni film that was made was tested on the LN2 medium to measure its sensitivity value in response to changes in temperature. The results showed that the Cu/Ni film sensor could detect changes in the low temperature in LN2. The results of data analysis showed that the curve relationship between voltage and temperature in the sample with the 2nd concentration (C2) had the highest relationship to influence each other between the voltage and temperature variables, and the sample had the highest sensitivity value compared to the others.


1996 ◽  
Vol 34 (10) ◽  
pp. 133-139 ◽  
Author(s):  
Martin Th. Steger ◽  
Wolfgang Meißner

Sewage sludge from oil refineries poses special problems in the disposal of solid, and often hazardous waste. Drying followed by low temperature conversion (i.e., pyrolysis at 400°C) renders sludge to fuel oil and char. This process was operated in full scale, using an input of 40 tonnes. An overall oil yield of 35% and a rate of 45% of char referring to the input of dried solids was achieved during the conversion process using a sludge having 16% dried solids concentration. Halogenated organics and PAH present in the the feed sludge were reduced during the conversion process by 98.4% and 83.7% respectively. Mercury was completely removed from the fuel oil and char through adsorption to the residue of oil/water separation (centrifugal sludge). The conversion oil produced meets fuel oil standards and can be used for industrial purposes. The char produced can be used as a reducing agent in steel manufacture.


Author(s):  
E. V. Bodrova ◽  
V. N. Krasivskaya

The study of problems related to the modernization of the oil industry at the end of the 19th - beginning of the 20th centuries allows asserting that the rapid technical re-equipment of oil refineries was due to the targeted state scientific and technical policy that was being implemented at that time, as well as to the highly effective system of privileges (patents) and mass promotion of technical knowledge and achievements. Besides, the role of entrepreneurs that supported individual inventors and research companies providing "brain gain" and investment in Russia was also significant. This contributed to the rapid introduction of technical innovations in production. Thus, the transition to extensive use of oil as industrial fuel contributed to a more intensive development of the factory industry. Modernization of the oil industry became a powerful incentive and, at the same time, a part of Russian industrialization. One of the most successful and quickly implemented innovations that were at the same time crucial for the changing nature of the Russian energy sector and the economy in general was the invention of "Nobel burner". It seemed that this solved the problem of oil residues. However, it proved to be extremely uneconomical to burn large amounts of oil fuel under the boilers of steam engines. Thus, "oil" energetics formed. The "oil imbalance" resulted in the suppression of the coal industry of the country. At the same time identifying the causes of the fuel crisis as one of the most important factors that led to the collapse of the Russian Empire allowed us to formulate a conclusion that the decline in oil production and increased demand for fuel oil in the First World War by the military and metallurgical industries, railways, the shortage of fuel and rising prices led to the disorganization of the whole economy, disruptions in the supply of food, raw materials and weapons.


Author(s):  
T. Inoué ◽  
H. Koike

Low temperature scanning electron microscopy (LTSEM) is useful to avoid artifacts such as deformation and extraction, because specimens are not subjected to chemical fixation, dehydration and critical-point drying. Since Echlin et al developed a LTSEM, many techniques and instruments have been reported for observing frozen materials. However, intracellular structures such as mitochondria and endoplasmic reticulum have been unobservable by the method because of the low resolving power and inadequate specimen preparation methods. Recently, we developed a low temperature SEM that attained high resolutions. In this study, we introduce highly magnified images obtained by the newly developed LTSEM, especially intracellular structures which have been rapidly frozen without chemical fixation.[Specimen preparations] Mouse pancreas and brown adipose tissues (BAT) were used as materials. After the tissues were removed and cut into small pieces, the specimen was placed on a cryo-tip and rapidly frozen in liquid propane using a rapid freezing apparatus (Eiko Engineering Co. Ltd., Japan). After the tips were mounted on the specimen stage of a precooled cryo-holder, the surface of the specimen was manually fractured by a razor blade in liquid nitrogen. The cryo-holder was then inserted into the specimen chamber of the SEM (ISI DS-130), and specimens were observed at the accelerating voltages of 5-8 kV. At first the surface was slightly covered with frost, but intracellular structures were gradually revealed as the frost began to sublimate. Gold was then coated on the specimen surface while tilting the holder at 45-90°. The holder was connected to a liquid nitrogen reservoir by means of a copper braid to maintain low temperature.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 194
Author(s):  
Joanna Pawłat ◽  
Piotr Terebun ◽  
Michał Kwiatkowski ◽  
Katarzyna Wolny-Koładka

Sterilization of municipal waste for a raw material for the production of refuse-derived fuel and to protect surface and ground waters against biological contamination during transfer and storage creates a lot of problems. This paper evaluates the antimicrobial potential of non-equilibrium plasma in relation to the selected groups of microorganisms found in humid waste. The proposed research is to determine whether mixed municipal waste used for the production of alternative fuels can be sterilized effectively using low-temperature plasma generated in a gliding arc discharge reactor in order to prevent water contamination and health risk for working staff. This work assesses whether plasma treatment of raw materials in several process variants effectively eliminates or reduces the number of selected groups of microorganisms living in mixed municipal waste. The presence of vegetative bacteria and endospores, mold fungi, actinobacteria Escherichia coli, and facultative pathogens, i.e., Staphylococcus spp., Salmonella spp., Shigella spp., Enterococcus faecalis and Clostridium perfringens in the tested material was microbiologically analyzed. It was found that the plasma treatment differently contributes to the elimination of various kinds of microorganisms in the analyzed raw materials. The effectiveness of sterilization depended mainly on the time of raw materials contact with low-temperature plasma. The results are very promising and require further research to optimize the proposed hygienization process.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4705
Author(s):  
Ewa Kochańska ◽  
Rafał M. Łukasik ◽  
Maciej Dzikuć

The COVID-19 pandemic has set new challenges for the HoReCa industry. Lockdowns have coincided with and strongly impacted the industrial transformation processes that have been taking place for a decade. Among the most important HoReCa transition processes are those related to the rapid growth of the delivery-food market and ordering meals via internet platforms. The new delivery-food market requires not only the development of specific distribution channels, but also the introduction of appropriate, very specific food packaging. Food packaging and its functionality are defined by the administrative requirements and standards applicable to materials that have contact with food and principally through the prism of the ecological disaster caused by enormous amounts of plastic waste, mainly attributed to the food packaging. To meet environmental and administrative requirements, new technologies to produce food packaging materials are emerging, ensuring product functionality, low environmental impact, biodegradability, and potential for composting of the final product. However, predominantly, the obtained product should keep the nutritional value of food and protect it against changes in color or shape. Current social transformation has a significant impact on the food packaging sector, on one hand creating a new lifestyle for society all over the world, and on the other, a growing awareness of the negative impact of humans on the environment and increasing responsibility for the planet. The COVID-19 pandemic has highlighted the need to develop a circular economy based on the paradigm of shortening distribution channels, using local raw materials, limiting the consumption of raw materials, energy, water, and above all, minimizing waste production throughout the life cycle of products, all of which are in line with the idea of low-carbon development.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1050
Author(s):  
Sarrthesvaarni Rajasuriyan ◽  
Hayyiratul Fatimah Mohd Zaid ◽  
Mohd Faridzuan Majid ◽  
Raihan Mahirah Ramli ◽  
Khairulazhar Jumbri ◽  
...  

The biggest challenge faced in oil refineries is the removal of sulfur compounds in fuel oil. The sulfur compounds which are found in fuel oil such as gasoline and diesel, react with oxygen in the atmosphere to produce sulfur oxide (SOx) gases when combusted. These sulfur compounds produced from the reaction with oxygen in the atmosphere may result in various health problems and environmental effects. Hydrodesulfurization (HDS) is the conventional process used to remove sulfur compounds from fuel oil. However, the high operating conditions required for this process and its inefficiency in removing the organosulfur compounds turn to be the major drawbacks of this system. Researchers have also studied several alternatives to remove sulfur from fuel oil. The use of ionic liquids (ILs) has also drawn the interest of researchers to incorporate them in the desulfurization process. The environmental effects resulting from the use of these ILs can be eliminated using eutectic-based ionic liquids (EILs), which are known as greener solvents. In this research, a combination of extractive desulfurization (EDS) and oxidative desulfurization (ODS) using a photocatalyst and EIL was studied. The photocatalyst used is a pre-reported catalyst, Cu-Fe/TiO2 and the EIL were synthesized by mixing choline chloride (ChCl) with organic acids. The acids used for the EILs were propionic acid (PA) and p-toluenesulfonic acid (TSA). The EILs synthesized were characterized using thermogravimetry analyser (TGA) differential scanning calorimetry (DSC) analysis to determine the physical properties of the EILs. Based on the TGA analysis, ChCl (1): PA (3) obtained the highest thermal stability whereas, as for the DSC analysis, all synthesized EILs have a lower melting point than its pure component. Further evaluation on the best EIL for the desulfurization process was carried out in a photo-reactor under UV light in the presence of Cu-Fe/TiO2 photocatalyst and hydrogen peroxide (H2O2). Once the oxidation and extraction process were completed, the oil phase of the mixture was analyzed using high performance liquid chromatography (HPLC) to measure the sulfur removal efficiency. In terms of the desulfurization efficiency, the EIL of ChCl (1): TSA (2) showed a removal efficiency of about 99.07%.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Sign in / Sign up

Export Citation Format

Share Document