scholarly journals URBAN AGROTECHNOLOGIES (CITY-FARMING) AS A PERSPECTIVE BRANCH OF DEVELOPMENT OF WORLD AGRIBUSINESS AND THE WAY TO IMPROVE THE CITIES FOOD SECURITY

Author(s):  
Natan Mikhailovich Rutkin ◽  
Oleg Yurievich Lagutkin ◽  
Lina Yurievna Lagutkina

The outlook of the development of world urban agrotechnologies ("city-farming") by means of key innovation technological and market trends analysis has been researched. It is noted that the tendencies to reduction of the area of productive lands, exhausting ecosystem resources, including World ocean resources, harmful consequences of the climate changing are the main limiting factors of the development of traditional agriculture and supplying food products to the growing population of the world. The remote territories of mass food production from the mass markets result in a large amount of waste products (food losses) in supply chains, along with decreasing product quality and raising costs. Growth of the world population, increasing concentration of urban citizens along with changing of consumers’ food preferences towards "health", "natural", "organic" food bring up the development of an additional, or alternate, system of uninterrupted supply or self-provision of cities with food products, ensuring future food security. The article highlights the prospect of developing the international branch of agriculture in terms of its transition to the high-tech stage of development ("AgTech"), and reviews the innovation technologies inseparable from that transition. It has been found that the development of the urban agrotechnologies (city-farming), as a combination of innovative high-performance agro-practices of the food production in urban environment, can step up the level of food security due to increasing food availability in qualitative and quantitative aspects. The review of main city-farming technologies in accordance with directions of its practical applications was done for the first time. The conception "urban agrotechnologies" ("city-farming") has been defined as the scientific term.

2019 ◽  
Vol 15 (5) ◽  
pp. 422-429 ◽  
Author(s):  
Rahaf M. Ajaj ◽  
Suzan M. Shahin ◽  
Mohammed A. Salem

Climate change and global warming became a real concern for global food security. The world population explosion is a critical factor that results in enormous emissions of greenhouse gasses (GHGs), required to cover the growing demands of fresh water, food, and shelter. The United Arab Emirates (UAE) is a significant oil-producing country, which is included in the list of 55 countries that produce at least 55% of the world’s GHGs and thus involved in the top 30 countries over the world with emission deficits. At the same time, the UAE is located in an arid region of the world, with harsh environmental conditions. The sharp population increases and the massive growth in the urbanization are primary sources, lead to further stresses on the agricultural sector. Thus, the future of the food production industry in the country is a challenging situation. Consequently, the primary objective of this work is to shed light on the current concerns related to climate change and food security, through describing the implications of climate change on the food production sector of the UAE. Tailored solutions that can rescue the future of food security in the country are also highlighted.


2018 ◽  
Vol 10 (3) ◽  
pp. 30
Author(s):  
Niels Dybro ◽  
Alan Christopher Hansen

Agribusinesses are investigating sustainable ways to meet the predicted increased demand for food production due to an increasing world population and higher living standards. Therefore, there is a strong need to increase agronomic output. This paper will review the current state of agricultural production of the main annual top-five staple grain crops grown around the world, their current yields and harvested area averages and trends. It concludes with a discussion of which changes are needed to increase the yield in lower yielding areas of the world. Finally, there is an assessment of what level of yield increases that could be attained provided the proposed changes are made and its predicted impact on food security by 2050.The current yield trends and trends for harvested area, when extrapolated out to 2050, indicate crop production will increase 106%. This includes an expansion of the total crop production area by 31%. This increase of cropping area can be achieved by increased utilization of available, uncropped land suitable for crop production, increased double cropping, and relay intercropping, allowing for multiple crops in a calendar year.In order to double crop production by 2050, it is necessary to focus on growing crops where the conditions make it possible, adopt the best sustainable crop production practices and implement them as intensively as possible everywhere, and consider improved crop production machine system options to reduce risk of soil compaction, which can reduce crop yields.With proposed changes across the world, it will be possible to exceed a doubling of food production by 2050 relative to 2005 levels, providing a reasonable high level of food security, absent wars and widespread natural disasters.


2021 ◽  
Vol 58 (1) ◽  
pp. 5517-5525
Author(s):  
Tursunov Hayrullo Odiljonovich Et al.

The article provides information on the effect of the optimal amount of seedlings, planting patterns and timing on plant growth cycles when growing rice as a secondary crop. Nowadays, the demand for food is also increasing tremendously as a result of the rapid growth of the world’s population. This indicates that the issue of food security will become more complicated in the future. Like all food products, the population's demand for rice is growing from year to year. According to official FAO data, by 2020, the total volume of rice production should reach 750 million tons to meet the demand of the world population for rice.  


2021 ◽  
pp. 1-7
Author(s):  
Ghislain de Marsily

In 2000, the World population was 6.2 billion; it reached 7 billion in 2012 and should reach 9.5 billion (±0.4) in 2050 and 11 billion (±1.5) in 2100, according to UN projections. The trend after 2100 is still one of global demographic growth, but after 2060, Africa would be the only continent where the population would still increase. The amount of water consumed annually to produce the food necessary to meet the needs varies greatly between countries, from about 600 to 2,500 m<sup>3</sup>/year per capita, depending on their wealth, their food habits (particularly meat consumption), and the percentage of food waste they generate. In 2000, the total food production was on the order of 3,300 million tons (in cereal equivalents). In 2019, about 0.8 billion inhabitants of the planet still suffer from hunger and do not get the nutrition they need to be in good health or, in the case of children, to grow properly (both physically and intellectually). Assuming a World average water consumption for food of 1,300 m<sup>3</sup>/year per capita in 2000, 1,400 m<sup>3</sup>/year in 2050, and 1,500 m<sup>3</sup>/year in 2100, a volume of water of around 8,200 km<sup>3</sup>/year was needed in 2000, 13,000 km<sup>3</sup>/year will be needed in 2050, and 16,500 km<sup>3</sup>/year in 2100. Will that much water be available on earth? Can there be conflicts related to a food deficit? Some preliminary answers and scenarios for food production will be given from a hydrologist viewpoint.


2015 ◽  
Vol 98 (3) ◽  
pp. 541-549 ◽  
Author(s):  
Joe O Boison ◽  
Sherri B Turnipseed

Abstract Aquaculture is currently one of the most rapidly growing food production industries in the world. The increasing global importance for this industry stems primarily from the fact that it is reducing the gap between the supply and demand for fish products. Commercial aquaculture contributes significantly to the economies of many countries since high-value fish species are a major source of foreign exchange. This review looks at the aquaculture industry, the issues raised by the production of fish through aquaculture for food security, the sustainability of the practice to agriculture, what the future holds for the industry in the next 10-20 years, and why there is a need to have available analytical procedures to regulate the safe use of chemicals and veterinary drugs in aquaculture.


foresight ◽  
1999 ◽  
Vol 1 (5) ◽  
pp. 399-412 ◽  
Author(s):  
Per Pinstrup‐Andersen ◽  
Marc J. Cohen

Although global food production has consistently kept pace with population growth, the gap between food production and demand in certain parts of the world is likely to remain. More than 800 million people in developing countries lack access to a minimally adequate diet. Continued productivity gains are essential on the supply side, because global population will increase by 73 million people a year over the next two decades. In this article we assess the current global food situation, look at the prospects through to the year 2020, and outline the policies needed to achieve food security for all. Emphasis is on the role that agricultural biotechnology might play in reaching this goal.


2018 ◽  
Vol 19 ◽  
pp. 120-130
Author(s):  
Nurul Suhada Ismail

The explosion of technology allows more manufacture food and variety in the market. However, the massive quantity of food is not essential measure of economic progress because the quality of food is more important when producing food. In realizing food quality along with food quantities, various legal issues related to food security have been arisen. Thus, this paper will be examine the legal issues related to food security from the Islamic perspective worldview. Using a study of documents released by the Food and Agriculture Organization (FAO) and content analysis, there are several legislative issues that have been found regarding food security. Such issues include aspects of food production, exploitation of natural resources, trade, and rights to the food. The apparent impact of these issues has undermined food security and food access, thus prompting food security in various parts of the world. Through an analysis of Islamic worldview, this paper presents the preservation of habluminallah and habluminannas relationships as a basis for addressing the issues discussed. Ledakan teknologi membolehkan bahan makanan dihasilkan dengan lebih banyak dan pelbagai di pasaran. Namun demikian, kuantiti makanan yang banyak bukan ukuran kemajuan ekonomi yang hakiki kerana kualiti makanan lebih utama untuk diambil kira dalam menghasilkan makanan. Dalam merealisasikan kualiti seiring dengan kuantiti makanan, pelbagai isu perundangan berkaitan sekuriti makanan telah timbul. Menyedari perkara berkenaan, makalah ini akan meneliti isu perundangan yang berkaitan sekuriti makanan daripada perspektif tasawur Islam. Dengan menggunakan kajian ke atas dokumen yang dikeluarkan oleh Organisasi Makanan dan Pertanian (Food and Agriculture Organization) (FAO) dan analisis kandungan, terdapat beberapa isu perundangan berkaitan sekuriti makanan yang ditemui. Isu tersebut merangkumi aspek pengeluaran makanan, eksploitasi sumber alam, perdagangan, serta hak terhadap makanan. Kesan ketara isu-isu tersebut telah menjejaskan jaminan keselamatan makanan dan akses makanan sekali gus menggugah sekuriti makanan di pelbagai bahagian dunia. Melalui analisis daripada tasawur Islam, makalah ini mengemukakan pemeliharaan hubungan habluminallah dan habluminannas sebagai asas mengatasi isu-isu yang dibincangkan.


2019 ◽  
Vol 1 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Dean Allemang

As the world population continues to increase, world food production is not keeping up. This means that to continue to feed the world, we will need to optimize the production and utilization of food around the globe. Optimization of a process on a global scale requires massive data. Agriculture is no exception, but also brings its own unique issues, based on how wide spread agricultural data are, and the wide variety of data that is relevant to optimization of food production and supply. This suggests that we need a global data ecosystem for agriculture and nutrition. Such an ecosystem already exists to some extent, made up of data sets, metadata sets and even search engines that help to locate and utilize data sets. A key concept behind this is sustainability—how do we sustain our data sets, so that we can sustain our production and distribution of food? In order to make this vision a reality, we need to navigate the challenges for sustainable data management on a global scale. Starting from the current state of practice, how do we move forward to a practice in which we make use of global data to have an impact on world hunger? In particular, how do we find, collect and manage the data? How can this be effectively deployed to improve practice in the field? And how can we make sure that these practices are leading to the global goals of improving production, distribution and sustainability of the global food supply? These questions cannot be answered yet, but they are the focus of ongoing and future research to be published in this journal and elsewhere.


2009 ◽  
Vol 2009 ◽  
pp. 238-238
Author(s):  
M Raymond

Food security is a global issue. General acceptance of the UN prediction that the world must increase food production by at least 50% in the next 20 years, and at least 100% in the next 40. Climate change and water availability will make this extremely challenging.


2020 ◽  
Vol 53 (3) ◽  
pp. 337-356
Author(s):  
A. FATHI ◽  
F. KARDONI

Quinoa is a dicotyledonous species for seeds and, therefore, is not known as a cereal grain and is a pseudograin, which is introduced nowadays as a new crop in the world. Population growth and the need for more food put additional pressure on the environment, especially on water resources and agronomic ecosystems. This has led to more attention to plants that grow at different latitudes and altitudes. Climatic and environmental changes affect agricultural inputs, especially water resources. So, the best way of adapting to the current situation is the introduction of low-water, salt resistant, and drought-tolerant plants to the recent climatic changes. Water scarcity has become a serious problem in many countries. This restriction has had a significant impact on the development of countries. The plants which grow in arid and semi-arid regions are often exposed to adverse environmental factors, such as drought or salinity. Salinity and drought stress, more than any other factor, decrease crop yields around the world. These two abiotic stresses are the main limiting factors for crop production, especially in arid and semi-arid regions of the world. Quinoa is an exceptional plant that can adapt to adverse conditions and can serve as a solution to the challenge of global food security. Recent droughts that occurred in the world have prompted governments to include plants in their development plans, which are adapted to the country's existing water and soil conditions and have high nutritional value. This way, quinoa cultivation can ensure their food security in the coming years.


Sign in / Sign up

Export Citation Format

Share Document