Analysis of the Gas Phase Epitaxy of Silicon Carbide as a Basic Process for Power Elec-tronics Technology. Review

2020 ◽  
Vol 25 (6) ◽  
pp. 483-396
Author(s):  
A.V. Afanasev ◽  
◽  
V.A. Ilyin ◽  
V.V. Luchinin ◽  
S.A. Reshanov ◽  
...  

Currently, chemical gas deposition is the main method for producing high-quality and reproducible epitaxial layers for commercial silicon carbide (SiC) power devices. Based on the experience of ETU «LETI» in the synthesis of monocrystalline SiC, an analysis of the current state of silicon carbide gas phase epitaxy (CVD) technology was carried out. It has been shown that modern CVD reactors allow to implement the growth processes of SiC epitaxial structures of high quality with the following parameters: substrates diameter up to 200 mm; thicknesses of epitaxial layers from 0.1 to 250 μm; layers of n - and p -types conductivity with ranges of doping levels 10-10 cm and 10-10 cm, respectively. At the same time, setting up the technology of the reproducible high-quality growth of epitaxial layers is an individual task for a specific type of reactor. It requires a detailed consideration of the technological factors presented in this paper, which at the end determine the achievable parameters of SiC-epitaxial products

2011 ◽  
Vol 679-680 ◽  
pp. 59-62 ◽  
Author(s):  
Stefano Leone ◽  
Yuan Chih Lin ◽  
Franziska Christine Beyer ◽  
Sven Andersson ◽  
Henrik Pedersen ◽  
...  

The epitaxial growth at 100 µm/h on on-axis 4H-SiC substrates is demonstrated in this study. Chloride-based CVD, which has been shown to be a reliable process to grow SiC epitaxial layers at rates above 100 µm/h on off-cut substrates, was combined with silane in-situ etching. A proper tuning of C/Si and Cl/Si ratios and the combination of different chlorinated precursors resulted in the homoepitaxial growth of 4H-SiC on Si-face substrates at high rates. Methyltrichlorosilane, added with silane, ethylene and hydrogen chloride were employed as precursors to perform epitaxial growths resulting in very low background doping concentration and high quality material, which could be employed for power devices structure on basal-plane-dislocation-free epitaxial layers.


1999 ◽  
Vol 572 ◽  
Author(s):  
S. Nishino ◽  
K. Matsumoto ◽  
Y. Chen ◽  
Y. Nishio

ABSTRACTSiC is suitable for power devices but high quality SiC epitaxial layers having a high breakdown voltage are needed and thick epilayer is indispensable. In this study, CST method (Close Space Technique) was used to rapidly grow thick epitaxial layers. Source material used was 3C-SiC polycrystalline plate of high purity while 4H-SiC(0001) crystals inclined 8° off toward <1120> was used for the substrate. Quality of the epilayer was influenced significantly by pressure during growth and polarity of the substrate. A p-type conduction was obtained by changing the size of p-type source material. The carrier concentration of epilayer decreased when a lower pressure was employed. Schottky diode was also fabricated.


2008 ◽  
Vol 600-603 ◽  
pp. 635-638 ◽  
Author(s):  
Reza Ghandi ◽  
Hyung Seok Lee ◽  
Martin Domeij ◽  
Carl Mikael Zetterling ◽  
Mikael Östling

This work focuses on Ni ohmic contacts to the C-face (backside) of n-type 4H-SiC substrates. Low-resistive ohmic contacts to the wafer backside are important especially for vertical power devices. Ni contacts were deposited using E-beam evaporation and annealed at different temperatures (700-1050 °C) in RTP to obtain optimum conditions for forming low resistive ohmic contacts. Our results indicate that 1 min annealing at temperatures between 950 and 1000 °C provides high quality ohmic contacts with a contact resistivity of 2.3x10-5 Ωcm2. Also our XRD results show that different Ni silicide phases appear in this annealing temperature range.


2014 ◽  
Vol 778-780 ◽  
pp. 193-196 ◽  
Author(s):  
Akira Miyasaka ◽  
Jun Norimatsu ◽  
Keisuke Fukada ◽  
Yutaka Tajima ◽  
Yoshiaki Kageshima ◽  
...  

The production of 150 mm-diameter SiC epitaxial wafers is the key to the spread of SiC power devices. We have developed production technology of the epitaxial growth for 4° off Carbon face (C-face) 4H-SiC epitaxial layers on 150 mm diameter substrates. Several growth parameters and hardware were optimized to obtain high uniformity wafers. We have succeeded in fabricating high quality C-face wafers with smooth surface and high uniformity.


1998 ◽  
Vol 512 ◽  
Author(s):  
S. Rendakova ◽  
N. Kuznetsov ◽  
N. Savkina ◽  
M. Rastegaeva ◽  
A. Andreev ◽  
...  

ABSTRACTThe characteristics of SiC high-power devices are currently limited by the small area of the devices, which is usually less than 1 sq. mm. In order to increase device area, defect density in SiC epitaxial structures must be reduced. In this paper, we describe properties of silicon carbide epitaxial layers grown on 4H-SiC wafers with reduced micropipe density. These layers were grown by the vacuum sublimation method. Large area Schottky barriers (up to 8 mm2) were fabricated on SiC epitaxial layers and characterized.


2008 ◽  
Vol 1069 ◽  
Author(s):  
Michael O'Loughlin ◽  
K. G. Irvine ◽  
J. J. Sumakeris ◽  
M. H. Armentrout ◽  
B. A. Hull ◽  
...  

ABSTRACTThe growth of thick silicon carbide (SiC) epitaxial layers for large-area, high-power devices is described. Horizontal hot-wall epitaxial reactors with a capacity of three, 3-inch wafers have been employed to grow over 350 epitaxial layers greater than 100 μm thick. Using this style reactor, very good doping and thickness uniformity and run-to-run reproducibility have been demonstrated. Through a combination of reactor design and process optimization we have been able to achieve the routine production of thick epitaxial layers with morphological defect densities of around 1 cm−2. The low defect density epitaxial layers in synergy with improved substrates and SiC device processing have resulted in the production of 10 A, 10 kV junction barrier Schottky (JBS) diodes with good yield (61.3%).


2002 ◽  
Vol 742 ◽  
Author(s):  
François Templier ◽  
Nicolas Daval ◽  
Léa Di Cioccio ◽  
Daniel Bourgeat ◽  
Fabrice Letertre ◽  
...  

ABSTRACTFeasibility of 4H-SiC epitaxy on SiCOI substrates has been demonstrated, with high quality of obtained layers. Power Schottky diodes were designed and fabricated on these new structures, and exhibited very interesting electrical performance, particularly in reverse mode, with Vbr ∼ 1000 V. This technology is very promising for the realization of monolithic SiC power systems.


2019 ◽  
Vol 963 ◽  
pp. 407-411 ◽  
Author(s):  
Andrea Severino ◽  
Domenico Mello ◽  
Simona Boninelli ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
...  

Silicon carbide (SiC) is an attractive material for power devices owing to the availability of high-quality epitaxial wafers and superior physical properties, such as its high breakdown electric field strength, high electron mobility, and low anisotropy. Ion implantation is a key process for both n- and p-type selective doping of SiC devices. A subsequent annealing in the temperature range of 1600- 1800°C is required to remove the damage induced by the implantation process and to electrically activate the implanted dopants. The aim of this work is the investigation of the effect of thermal annealing on the damage induced by Phosphorous ion implantation to produce n-type regions.


2012 ◽  
Vol 717-720 ◽  
pp. 9-12 ◽  
Author(s):  
Yasushi Urakami ◽  
Itaru Gunjishima ◽  
Satoshi Yamaguchi ◽  
Hiroyuki Kondo ◽  
Fusao Hirose ◽  
...  

A reduction in threading screw dislocation (TSD) density in 4H-SiC (silicon carbide) crystal is required for SiC power devices. In this study, TSD’s transformation by the RAF (repeated a-face) growth method [1] is observed by transmission X-ray topography (g=0004) of the cross-section of the crystal. Increasing the number of repetitions of a-face growth and offsetting c-face growth to an angle of several degrees reduce TSDs. TSD density is reduced to 1.3 TSD/cm2. The RAF growth method is very effective towards growing high quality SiC crystals.


Sign in / Sign up

Export Citation Format

Share Document