scholarly journals Nutritional Value of Vegetable Wastes as Livestock Feed

Author(s):  
Osman Mahgoub ◽  
Hafidh Al-Mahrouqi ◽  
Sadeq Al-Lawati ◽  
Rabea Al-Muqbali

A study was carried out to evaluate the nutritional value of spirulina (Arthrospira platensis) to determine its potential use for feeding livestock in Oman. Spirulina was grown in wooden cubicles and harvested after 10 days. One batch of spirulina was dried by centrifugation (CS) and the other was dried in an oven without centrifugation (NCS). Samples were analyzed for dry matter (DM) and proximate chemical components. An in vitro assessment was carried out to measure gas production and in vitro DM degradability of spirulina. The DM was 56.1 and 57.1% in CS and NCS, respectively. The proximate composition for CS and NCS as a percentage of DM, respectively was: 60.8 and 62.5 for crude protein (CP); 0.97 and 1.05 for Ether extract (EE); 6.35 and 7.55 for ash. The CS and NCS contained: 0.25 and 0.37% DM Acid Detergent Fiber (ADF) and 1.03 and 1.92 % DM Neutral Detergent Fiber (NDF), respectively. The gross energy (cal/g DM) was 5730 and 5629 in CS and NCS, respectively. The CS produced more in vitro gas (73 and 71 ml/200mg DM) from 12 hr until the end of the experimental period (96 hr) compared to the NCS (51 and 48 ml/200mg DM), respectively. The CS had significantly higher metabolizable energy (ME) (approximately 12 MJ/kg DM) than NCS (about 9 MJ/kg DM). CS had significantly higher (81 and 79%) Organic Matter Digestibility (OMD) than NCS (61 and 58%). The CS had significantly higher Short Chain Fatty Acids (SCFA) (1.7 and 1.6 µmol) than NCS (1.2 and 1.1 µmol). It was concluded that spirulina is an excellent source of protein and can be used after drying as a potential animal feed. There was little effect of the method of drying of spirulina on its chemical composition or digestibility. 

Author(s):  
Osman Mahgoub ◽  
Isam T. Kadim ◽  
Yasmin Eltahir ◽  
Sadeq Al-Lawatia ◽  
Abdulrahim M. Al-Ismaili

ABSTRACT: A study was carried out to evaluate the nutritional value of waste from lettuce, green cabbage, red cabbage and cauliflower to determine their potential use for feeding to livestock. Vegetable wastes were dried in a solar tunnel drier. The crude protein (CP), ether extract (EE), total ash, acid detergent fiber (ADF) and neutral detergent fiber (NDF) were 24.1, 2.7, 24.7, 29.3 and 29.0%; 17.7, 2.3, 13.7, 25.6, and 28.7%; 11.9, 1.9, 8.8, 23.1 and 25.6%; 10.3, 0.5, 7.0, 16.1 and 19.6 % (DM basis) in cauliflower, lettuce, green cabbage and red cabbage, respectively. The gross energy (MJ/kg DM) in cauliflower  and green cabbage (16.9 and 16.6) was higher than that observed in red cabbage and lettuce (14.1 and14.3). The red and green cabbage waste had higher net gas production (73 and 71 ml/g DM/12h) compared to the lettuce and cauliflower vegetable waste (51 and 48 ml/g DM/12h respectively). The green and red cabbage waste had significantly higher metabolizable energy (ME) (approximately 12 MJ/kg DM) than both lettuce and cauliflower waste (approximately 9 MJ/kg DM). The in vitro DM and OM digestibility (OMD) in green and red cabbage waste was significantly higher than in lettuce and cauliflower. The green and red cabbage waste had significantly higher short chain fatty acids (SCFA) (1.7 and 1.6 µmol) than lettuce and cauliflower (1.2 and 1.1 µmol). It was concluded that leafy vegetable waste (lettuce, green cabbage, red cabbage and cauliflower) is an excellent source of nutrients which can potentially be used after drying as an animal feed to reduce animal feeding costs and consequently increase farmers’ profits. This would also help in waste management and the reduction of environmental pollution.


2021 ◽  
Vol 5 ◽  
Author(s):  
Stiven Quintero-Anzueta ◽  
Isabel Cristina Molina-Botero ◽  
Juan Sebastian Ramirez-Navas ◽  
Idupulapati Rao ◽  
Ngonidzashe Chirinda ◽  
...  

Forage grass nutritional quality directly affects animal feed intake, productivity, and enteric methane (CH4) emissions. This study evaluated the nutritional quality, in vitro enteric CH4 emission potential, and optimization of diets based on two widely grown tropical forage grasses either alone or mixed with legumes. The grasses Urochloa hybrid cv. Cayman (UHC) and U. brizantha cv. Toledo (UBT), which typically have low concentrations of crude protein (CP), were incubated in vitro either alone or mixed with the legumes Canavalia brasiliensis (CB) and Leucaena diversifolia (LD), which have higher CP concentrations. Substitution of 30% of the grass dry matter (DM) with CB or LD did not affect gas production or DM degradability. After 96 h of incubation, accumulated CH4 was 87.3 mg CH4 g−1 DM and 107.7 mg CH4 g−1 DM for the grasses alone (UHC and UBT, respectively), and 100.7 mg CH4 g−1 DM and 113.2 mg CH4 g−1 DM for combined diets (70% grass, 15% CB, and 15% LD). Diets that combined legumes (CB or LC) and grass (UHC or UBT) had higher CP contents, gross, and metabolizable energy (GE, ME, respectively) densities, as well as lower concentrations of neutral detergent fiber (NDF) and acid detergent lignin (ADL). The ME and nutritional variables such as NFD, tannins (T), and CP showed a positive correlation with in vitro net gas production, while ruminal digestibility was affected by CP, ADL, T, and GE. Optimal ratios of components for ruminant diets to reduce rumen net gas production and increase protein content were found with mixtures consisting of 60% grass (either UHC or UBT), 30% CB, and 10% LD. However, this ratio did not result in a decrease in CH4 production.


2020 ◽  
Vol 45 (1) ◽  
pp. 309-316
Author(s):  
O. O. Olufayo ◽  
O. O. Falola

The effect of processing on proximate, mineral, anti-nutritional compositions, gasproduction characteristics, methane production, predicted metabolizable energy, organic matter digestibility and short chain fatty acids production of Delonix regia seeds incubated with Pennisetum purpureum were determined. Five treatments (T1: mixture of soaked Delonix regia seed and Pennisetum purpureum; T2: mixture of raw Delonix regia seed and Pennisetum purpureum; T3: mixture of roasted Delonix regia seed and Pennisetum purpureum; T4: mixture of boiled Delonix regia seed and Pennisetum purpureum and T5:100% Pennisetum purpureum which serves as control) were designed. In vitro gas production techniques for 24 hours were used to determine the nutritive value of processed 50% Delonix regia seed and 50% Pennisetum purpureum. The crude protein ranged from 13.38 to 15.71g/100g DM among the treatments while crude fibre was between 20.10 and 21.40g/100g DM, ether extract ranged from 1.90 to 3.12g/100g DM and ash 7.77 to 12.34g/100g DM. Calcium ranged from (2.34 - 3.61%), magnesium ranged (2.90 – 3.48%), sodium (2.05 – 2.91%) and phosphorus (0.88 – 1.12%). It was observed generally that T2 recorded the highest among the treatments while the values obtained for the heat treated seeds were lower than the raw. Oxalates ranged between (0.23% - 0.32%), phytates (0.29 – 0.43%), tannin (0.03 – 0.08%) and saponnin (0.36 – 0.49%). Methane (ml/200mg DM) production indicated T3 (50% roasted Delonix regia seed and 50% Pennisetum purpureum) was highest. The potential gas production 'a+b' ranged from 12.33 to 28.33mL/200mg DM). The highest potential gas production 'a+b' value of 28.33mL/200mg DM was obtained in T1 compared to other dietary treatment. Dry matter digestibility (DMD) ranged between 70.23 – 91.02% while the rate of fermentation was between 0.51 and 1.18ml/hr. The rate of fermentation was directly proportional to dry matter digestibility (DMD); the soaked recorded the highest value. Processing enhanced the nutritional contents of Delonix regia seeds. The result obtained showed that there were significant differences (p<0.05) among the treatments. In conclusion, soaking the seeds of Delonix regia had beter nutritional contents and has the potential for dry season feeding.  


2018 ◽  
Vol 197 ◽  
pp. 06005
Author(s):  
Nevyani Asikin ◽  
Anuraga Jayanegara ◽  
Muhamad Ridla ◽  
Anjas Asmara Samsudin

Pennisetum purpoides is one of the most widely cultivated tropical forages and it is often used as animal feed in Indonesia. However, grass feeding could not fulfill the need of nutrients if served as single feed because it contained of high crude fiber and low protein. In terms of nutritional adequacy, animal feed should contain complete nutritional value in order to achieve an optimum productivity. This experiment aimed to elucidate the potential of tropical grass as a feed in ruminant by using an in vitro gas production technicque. The grasses were determined for proximate analysis, Van Soest fiber fractions (neutral detergent fiber, acid detergent fiber and acid detergent lignin), and in vitro rumen fermentation parameters. This study was conducted from January until April 2018 at Nutrition Laboratory, Department of Animal Science, Faculty of Agriculture, University Putra Malaysia, Serdang Selangor Darul Ehsan, Malaysia. This study used a randomized block design with 3 replications. There were three treatments tested in this study, i.e. (1) Pennisetum purpoides (T1), (2) Setaria splendida (T2), (3) Setaria anceps (T3). Parameters measured in the in vitro study is total gas production. Data were tested using analysis of variance (ANOVA) and continued with Duncan test if there was a significant difference among treatments. The data showed that gas production is not significantly different (P>0,05).


2020 ◽  
Vol 40 (1) ◽  
pp. 179-190
Author(s):  
K. O. Yusuf ◽  
O. A. Isah ◽  
O. M. Arigbede ◽  
A. O. Oni ◽  
C. F. I. Onwuka

Studies were conducted to evaluate the nutritive value of eight selected forages (Tridax procumbens, Merremia aegyptia, Aspilia africana, Tithonia diversifolia, Alchornea cordifolia, Alchornea laxiflora, Synedrella nodiflora, and Newbouldia laevis) consumed by ruminants in South-Western Nigeria. Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was carried out for 72 hours on the plants. Metabolizable energy (ME), Organic matter digestibility (OMD) and Short chain fatty acids (SCFA) were predicted and methane (CH4) was measured. Five of the plants were subjected to acceptability study using cafeteria method. The result of the chemical composition revealed that M. aegyptia had the highest value of CP (22.09 %) while Tridax procumbens had the lowest (10.50 %). A. africana had the highest content of Calcium, Phosphorus and Zinc with values of 3.10 %, 0.93 % and 39 ppm respectively. The analysis of secondary metabolites showed that A. africana, T. diversifolia and S. nodiflora were high in saponin while A. cordifolia, A. laxiflora, T. diversifolia and A. africana were implicated for condensed Tannin. N. laevis recorded a high level of steroids. Results showed significant variations in the values of IVGP, ME, OMD, SCFA and CH4 obtained for the plants. The order of preference of the plants by the calves were M. aegyptia>A. cordifolia > N. laevis > A. axiflora> T. diversifolia. The study revealed that the forages are rich in crude protein as well as micro and macro minerals. They are also rich in highly fermentable carbohydrates which affirm them as ruminant feed resource.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Mousa GA

Pectinase production for improving buffalo’s diets digestion is the main objective of this work. Effects of fungal strains and different cultivation conditions on pectinase production have been studied. In vitro batch culture technique was used for investigate impact of the produced pectinase compared with commercial pectinase (SMIZYME ® ) on rumen fermentation parameters and diet degradation. Penicillium chrysogenum exhibited the highest pectinase activity at 3 days of incubation period , initial pH 4 of the growth medium, yeast extract as a sole nitrogen source and pomegranate peel as a carbon source at a concentration of 15 % (W/V). Three (g/kg) of the both enzymes supplementation significantly increased treated diet’s dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF) degradability with increase total gas production ( TGP) and short chain fatty acids (SCFA) concentration. The enlargement of pectinase production locally will lead to animal production improvement, encourage self-reliance and reduce the cost of enzymes importation.


2021 ◽  
Vol 159 (7-8) ◽  
pp. 615-621
Author(s):  
K. L. Swanson ◽  
H. M. Bill ◽  
J. Asmus ◽  
J. M. Heguy ◽  
J. G. Fadel ◽  
...  

AbstractThe aim of this study was to determine the in vitro digestibility and in sacco disappearance of dry matter (DM) and neutral detergent fibre (NDF) in total almond hulls (TAH), pure almond hulls (PAH) or Debris. The TAH were used because there are no data on the effect of debris (non-hull material) on the nutritional value of almond hulls. Twelve samples of commercial almond hulls were used, with one subsample representing the TAH and the other subsample hand sorted to separate the hulls (PAH) from Debris. Gas production and Ankom Daisy method were used to determine in vitro digestibility, while two rumen-fistulated cows were used to measure in sacco disappearance of PAH and TAH. For in vitro digestibility, both PAH and TAH were more digestible and had greater gas production than Debris. The PAH had greater in vitro true digestibility on a DM basis and NDF digestibility at 48 and 72 h compared with TAH. Nonpareil hulls provided greater metabolizable energy (ME) concentration when compared with other almond varieties, with PAH supplying numerically more ME than TAH for both varieties. For in sacco disappearance, PAH had greater DM and NDF disappearance along with a greater rate of disappearance for NDF compared with TAH. This research demonstrated that Debris is highly indigestible; therefore, hulling, agronomic and harvesting practices should be focused on reducing Debris in commercial almond hulls to improve their nutritive value as a feedstuff for livestock.


2015 ◽  
Vol 13 (2) ◽  
pp. e06SC01
Author(s):  
Ali Hatami ◽  
Daryoush Alipour ◽  
Fardin Hozhabri ◽  
Meisam Tabatabaei

<p>This study was conducted to evaluate the effects of ensiling pomegranate peel (PP) with different levels of polyethylene glycol (PEG) on its chemical composition, tannin content, <em>in vitro</em> gas production and fermentation characteristics. Fresh PP was chopped and ensiled in mini silos made of polyvinyl chloride tubing. Five levels of PEG were studied: 0 (control), 5, 10, 15, and 20% of fresh PP (dry matter basis). Total phenolics, total tannins, crude ash, crude protein, neutral detergent fiber and acid detergent fiber content and pH decreased with increasing PEG levels, whereas dry matter and non-fiber carbohydrates content, non-tannin phenols, lactic acid and ammonia concentrations and buffering capacity increased. The water soluble carbohydrates and ether extract concentrations were not influenced by the addition of PEG. The partitioning factor and efficiency of microbial biomass production were quadratically decreased (<em>p</em>=0.020 and <em>p</em>=0.032, respectively) as PEG inclusion increased, but the <em>in vitro </em>apparent dry matter disappearance did not differ among treatments. Compared to control, the <em>in vitro</em> true disappearance and <em>in vitro</em> fiber digestibility had a tendency to be higher in silages treated with PEG (<em>p</em>=0.081 and <em>p</em>=0.069, respectively). The metabolizable energy content and total volatile fatty acids concentration increased quadratically by PEG inclusion. The asymptotic gas production and rate of gas production were higher in PEG-treated silages. Overall, ensiling PP with PEG can improve the fermentation characteristics of this by-product.</p>


Author(s):  
Esra GÜRSOY ◽  
Adem KAYA ◽  
Mehmet GÜL

The purpose of this study was to compare the chemical composition, metabolizable energy, net energy lactation, total digestible nutrient, in vitro digestion parameters, and relative feed quality of some grass forage plants growing naturally in the meadows and pastures of Erzurum province in Turkey. Orchardgrass (Dactylis glomerata), Variegated brome (Bromus variegatus), and Intermediate wheatgrass (Agropyron intermedium) were used as the research material. In this study, the metabolizable energy (ME) and net energy lactation (NEL) contents of the green grass crops forage plants were determined by in vitro gas production method, and their digestibility parameters and relative feed quality (RFQ) by the neutral detergent fiber (NDF) procedure using an Ankom Daisy incubator. As a result of the study, the differences between the forage plants were found to be statistically significant in terms of chemical composition, metabolizable energy, net energy lactation, true organic matter digestibility (TOMD) and RFQ (P<0.05). While the green intermediate wheatgrass was found to have the highest crude protein (CP) (19.56%), crude fat (CF) (3.06%), dry matter (DM) (9.14%), ME  (8.82%), NEL (5.42%), and TOMD (97.75%); the green variegated brome was found to have the highest RFQ (149.79). The green orchardgrass was found to have the highest contents of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) with 66.23%, 34.14, and 8.52%, respectively. In conclusion, the green grass forage plants examined in this study can be used to eliminate the quality roughage deficit.


Sign in / Sign up

Export Citation Format

Share Document