scholarly journals SYNERGISM BETWEEN RHIZOSPHERE BACTERIA ISOLATES FROM Scleria sp., Clidemia sp., AND Panicum sp. TO INCREASE THE EFFECTIVENESS OF MIXED CULTURES IN HYDROCARBON BIODEGRADATION

2021 ◽  
Vol 7 (2) ◽  
pp. 61-65
Author(s):  
Dwi Hardestyariki ◽  
Bambang Yudono ◽  
Munawar Munawar

The purpose of this research is to obtain hydrocarbon degrading bacteria that work synergistically in a consortium. Consortium microorganisms is mixture of microbial populations in the form of communities that have mutualistic relationships and doesn’t inhibition the growth of other microbes. In this study, isolates were obtained from the rhizosphere of soil contaminated with petroleum. The isolates obtained were tested for synergism to determine the relationship between bacterial isolates. Synergism testing was carried out using the spread plate method on agar media. The results of this study showed that isolate number one showed antagonistic properties to other bacterial isolates by forming a clear zone around the disc paper. A total of eight bacterial isolates showed the greatest percentage of synergism, namely ≥ 80% so that the eight rhizosphere bacterial isolates could be used as materials for mixed culture.

2021 ◽  
Vol 23 (1) ◽  
pp. 11-17
Author(s):  
Siti Nur Jannah ◽  
Yumna Rahmadias Hanifa ◽  
Adi Budi Utomo ◽  
Ashar Kurnia Dian Prambodo ◽  
Arina Tri Lunggani

Marine organism is one of the riches in the ocean of Indonesia. The benefits of sea use for new products produced are widely used and have high market demand. Enzymes that have marine interests have unique properties and have good benefits for industry. This study aims to isolate the bacteria that have symbionts with Padina sp and determine the potential of the enzyme hydrolase produced by these bacteria. Isolation is done by the spread plate method. Pure isolates obtained were then tested for the potential of the enzyme hydrolase on selective media. Clear zone measurements are performed to determine which bacterial isolates are good for enzyme production. The results obtained by 6 isolates of pure bacteria, all of which include Gram negative bacteria that form bacilli. All isolates had the ability to produce different Protease, Lipase, Amylase and Cellulase enzymes. The enzymes obtained from these symbiotic bacteria are expected to be used for industrial-scale production in Indonesia. In addition, the presence of this symbiont bacteria is able to reduce the level of exploitation of Padina sp and contribute to preserving the marine ecosystem.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Siti Khotimah ◽  
Suharjono Suharjono ◽  
Tri Ardyati ◽  
Yulia Nuraini

Abstract. Khotimah S, Suharjono, Ardyati T, Nurani Y. 2020. Isolation and identification of cellulolytic bacteria at fibric, hemic, and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas 21: 2103-2112. Cellulose degrading bacteria was one of the microbial removers of organic matter contained in the soil into simpler monomers so that it can be utilized by other organisms. The objective of the research was to obtain cellulose-degrading bacteria found on fibric, hemic, and sapric peat in forest and shrubs (oil palm). The bacteria were isolated by pour plate method on 1% CMC media. Selected isolates were assayed quantitatively based on the activity of cellulase enzyme, identified with 16S rDNA. The density of cellulolytic bacteria in the secondary forest peat of fibric, hemic, sapric were 2.1x103 cfu/g, 5.9x104 cfu/g, and 4.9x104 cfu/g whereas, in the area of shrubs/oil palm peat fibric, hemic and sapric 6.9x104 cfu/g, 8.4x104 cfu/g and 3.4x105 cfu/g respectively. There were 19 bacterial isolates that have clear zones around the colony as degradation of cellulose had highest ability to degrade cellulose with clear zones of 5-7 mm. The strain of SB1.1.1 showed highest activity of cellulase enzyme 11.17 U/mL, followed by HH3.1.1 strain and SB2.3 7.83 U/mL. Based on the phylogeny tree, strain SB1.1.1 and HH3.1.1 have the closest kinship relationship with Bacillus cereus with a kinship relationship of 100%, while SB2.3 has the closest kinship relationship with Bacillus stratosphericus with a relationship of 99.85 %.


2018 ◽  
Vol 6 (2) ◽  
pp. 47-52
Author(s):  
Suprapto Surapto ◽  
Tri Gunaedi ◽  
Basa T. Rumahorbo

The study about the activity of the enzyme amylase from amylolytic bacterial isolates from wet sagoo starch and  its traditional provision environment had been done in Jayapura. The purposes of this study were to determine the activity of amylase enzyme and to identify the bacteria isolated from wet sagoo starch and its processing environment in Jayapura district. The method used was an experimental laboratorium in which isolation of amylolytic bacteria was performed by using nutrient agar medium with 1% soluble starch on spreed pour plate method. The enzyme activity was detected with 0.2% iodine in 2% potassium iodide which were able to form a clear zone. The protein content of the crude enzyme extract was determined by the Bradford method using bovine serum albumin (BSA). Amylase enzyme activity was determined by the formula: DUN/ml = [(R0-R1)/R0] [dilution factor] DUN/ml (dextrinizing units per ml). The results showed that there were 15 isolates amylolytic bacteria. Four (4) bacterial isolates have amylolytic power of more than 30 mm. The amilase activity of amylolytic bacterial of all  isolates were quite high: which were 35 577, 18 903,  32 106 and 46 600 U/mg for SU4, SU13, SU23 and SU40 respectively. The identification of isolates indicated that the three isolates are members of the Bacillus cereus ATCC 14 579 types with a similarity value of 71.70% to 81.10%, and one isolate is Bacillus subtilis ATCC 6501 members with a similarity value of 94.30%. Keywords: Amylolytic bacteria, amylase activity, characterization, sago flour.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Nadhifah Rizqi Firdaus ◽  
Rahmawati Rahmawati ◽  
Riyandi Riyandi

The use of polyoethylene degradable polyethylene in Indonesia, especially in West Kalimantan, is high enough to potentially cause environmental pollution. One way to resolve pollution caused by polyethylene oxo-degradable plastic waste is to utilize isolates from the peat soil around the Kuala Dua Final Disposal Site, Rasau Jaya, which is able to degrade oxo-degradable polyethylene. This research aims to determine the bacterial genera that can to be expected to degrade Oxo-Degradable Polyethylene. Samples were taken from peat soil with the incubation method of oxo-degradable polyethylene for 2 weeks, 4 weeks and 6 weeks. Isolation use the pour plate method with Enrichment Broth Media and Enrichment Agar Media. The isolation results obtained 9 (nine) bacterial isolates which are distinguished based on incubation time and morphological characters.


2020 ◽  
Vol 36 (4) ◽  
pp. 126-135
Author(s):  
T.V. Shushkova ◽  
D.O. Epiktetov ◽  
S.V. Tarlachkov ◽  
I.T. Ermakova ◽  
A.A. Leontievskii

The degradation of persistent organophosphorus pollutants have been studied in 6 soil bacterial isolates and in 3 bacterial strains adapted for utilization of glyphosate herbicide (GP) under laboratory conditions. Significant differences in the uptake of organophosphonates were found in taxonomically close strains possessing similar enzymatic pathways of catabolism of these compounds, which indicates the existence of unknown mechanisms of activity regulation of these enzymes. The effect of adaptation for GP utilization as a sole phosphorus source on assimilation rates of several other phosphonates was observed in studied bacteria. The newly found efficient stains provided up to 56% of GP decomposition after application to the soil in the laboratory. The unresolved problems of microbial GP metabolism and the trends for further research on the creation of reliable biologicals capable of decomposing organophosphonates in the environment are discussed. organophosphonates, glyphosate, biodegradation, bioremediation, C-P lyase, phosphonatase, degrading bacteria Investigation of phosphonatase and genome sequencing were supported by Russian Science Foundation Grant no. 18-074-00021.


2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Saskia Rughöft ◽  
Nico Jehmlich ◽  
Tony Gutierrez ◽  
Sara Kleindienst

The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.


Author(s):  
Tamara Mainetti ◽  
Marilena Palmisano ◽  
Fabio Rezzonico ◽  
Blaž Stres ◽  
Susanne Kern ◽  
...  

AbstractConjugated estrogens, such as 17β-estradiol-3-sulfate (E2-3S), can be released into aquatic environments through wastewater treatment plants (WWTP). There, they are microbiologically degraded into free estrogens, which can have harmful effects on aquatic wildlife. Here, the degradation of E2-3S in environmental samples taken upstream, downstream and at the effluent of a WWTP was assessed. Sediment and biofilm samples were enriched for E2-3S-degrading microorganisms, yielding a broad diversity of bacterial isolates, including known and novel degraders of estrogens. Since E2-3S-degrading bacteria were also isolated in the sample upstream of the WWTP, the WWTP does not influence the ability of the microbial community to degrade E2-3S.


2021 ◽  
pp. 117424
Author(s):  
Ali Akbari ◽  
Carolyn David ◽  
Arshath Abdul Rahim ◽  
Subhasis Ghoshal

Sign in / Sign up

Export Citation Format

Share Document