scholarly journals Socializing the rain: human adaptation to ecological variability in a fishery, Mweru-Luapula, Zambia

2019 ◽  
Vol 26 (1) ◽  
pp. 224 ◽  
Author(s):  
Christopher M. Annear ◽  
Peter R. Waylen

<p><strong>Abstract </strong></p><p>Rainfall drives fishery fertility in Mweru-Luapula, thus rainfall variability contributes to frequent changes in fishing catches. Fishers and traders have adapted their institutions to this variable ecology in a variety of ways, including learning to read the fishery for productive periods and practicing multiple modes of income procurement. By accurately identifying inter-annual, inter-decadal, and longer spans of rainfall trends, future high and low yields can be forecast. This article presents and analyzes annual rainfall in the fishery from 1916-1992 and quantitative fish market data comprised of observed fish catch numbers by species in three markets from September 2004 to September 2005. It uses political ecology to better understand fish production, trade, and subsistence in this South-Central African freshwater fishery. We combine qualitative analysis of fisher and marketer perceptions of the fishery and knowledge of rainfall patterns to show how human behavior is not "tragically" driven, but instead based on the state of the ecological, sociocultural, and socioeconomic environment at a given time.</p><p><strong>Keywords</strong>: African freshwater fisheries, rainfall modeling, political ecology, Mweru-Luapula, Zambia, climate change</p>

2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 27-36
Author(s):  
RANJAN PHUKAN ◽  
D. SAHA

Rainfall in India has very high temporal and spatial variability. The rainfall variability affects the livelihood and food habits of people from different regions. In this study, the rainfall trends in two stations in the north-eastern state of Tripura, namely Agartala and Kailashahar have been studied for the period 1955-2017. The state experiences an annual mean of more than 2000 mm of rainfall, out of which, about 60% occurs during the monsoon season and about 30% in pre-monsoon. An attempt has been made to analyze the trends in seasonal and annual rainfall, rainy days and heavy rainfall in the two stations, during the same period.Non-parametric Mann-Kendall test has been used to find out the significance of these trends. Both increasing and decreasing trends are observed over the two stations. Increasing trends in rainfall, rainy days and heavy rainfall are found at Agartala during pre-monsoon season and decreasing trends in all other seasons and at annual scale. At Kailashahar, rainfall amount (rainy days & heavy rainfall) is found to be increasing during pre-monsoon and monsoon seasons (pre-monsoon season). At annual scale also, rainfall and rainy days show increasing trends at Kailashahar. The parameters are showing decreasing trends during all other seasons at the station. Rainy days over Agartala show a significantly decreasing trend in monsoon, whereas no other trend is found to be significant over both the stations.  


Climate ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 96
Author(s):  
Abrham Belay ◽  
Teferi Demissie ◽  
John W. Recha ◽  
Christopher Oludhe ◽  
Philip M. Osano ◽  
...  

This study investigated the trends and variability of seasonal and annual rainfall and temperature data over southern Ethiopia using time series analysis for the period 1983–2016. Standard Anomaly Index (SAI), Coefficient of Variation (CV), Precipitations Concentration Index (PCI), and Standard Precipitation Index (SPI) were used to examine rainfall variability and develop drought indices over southern Ethiopia. Temporal changes of rainfall trends over the study period were detected using Mann Kendall (MK) trend test and Sen’s slope estimator. The results showed that the region experienced considerable rainfall variability and change that resulted in extended periods of drought and flood events within the study period. Results from SAI and SPI indicated an inter-annual rainfall variability with the proportions of years with below and above normal rainfall being estimated at 56% and 44% respectively. Results from the Mann Kendall trend test indicated an increasing trend of annual rainfall, Kiremt (summer) and Bega (dry) seasons whereas the Belg (spring) season rainfall showed a significant decreasing trend (p < 0.05). The annual rate of change for mean, maximum and minimum temperatures was found to be 0.042 °C, 0.027 °C, and 0.056 °C respectively. The findings from this study can be used by decision-makers in taking appropriate measures and interventions to avert the risks posed by changes in rainfall and temperature variability including extremes in order to enhance community adaptation and mitigation strategies in southern Ethiopia.


Author(s):  
Isaiah A. I. ◽  
Yamusa A. M. ◽  
Odunze A. C.

This study examined the implication of rainfall variability on cassava yield in selected coastal and upland areas of Akwa Ibom State, Nigeria. Thirty years daily rainfall data were collected from Nigeria Meteorological Agency (1989 – 2018); cassava yield data were also collected from Akwa Ibom State Ministry of Agriculture Uyo (1989 – 2018). Descriptive statistics was used to determine the average annual rainfall and cassava yield. Time series analysis were used to assess the relationship between rainfall and cassava yield. The result indicated an increase in rainfall trends in all areas with Eket – r2 = 0.6631, Oron - r2 = 0.5329, Uyo - r2 = 0.4215 and Ikot Ekpene - r2 = 0.4042. The result also showed an increase in yield of cassava in Uyo and Ikot Ekpene at r2 = 0.2436 and 0.4397 respectively; while its decreases in Eket and Oron at r2 = 0.0611 and 0.1159 respectively. This suggested that a high yield of cassava may be achieved only in the upland areas of Akwa Ibom State due to continuous increase in rainfall as a result of climate change.


Author(s):  
David Nash

Precipitation levels in southern Africa exhibit a marked east–west gradient and are characterized by strong seasonality and high interannual variability. Much of the mainland south of 15°S exhibits a semiarid to dry subhumid climate. More than 66 percent of rainfall in the extreme southwest of the subcontinent occurs between April and September. Rainfall in this region—termed the winter rainfall zone (WRZ)—is most commonly associated with the passage of midlatitude frontal systems embedded in the austral westerlies. In contrast, more than 66 percent of mean annual precipitation over much of the remainder of the subcontinent falls between October and March. Climates in this summer rainfall zone (SRZ) are dictated by the seasonal interplay between subtropical high-pressure systems and the migration of easterly flows associated with the Intertropical Convergence Zone. Fluctuations in both SRZ and WRZ rainfall are linked to the variability of sea-surface temperatures in the oceans surrounding southern Africa and are modulated by the interplay of large-scale modes of climate variability, including the El Niño-Southern Oscillation (ENSO), Southern Indian Ocean Dipole, and Southern Annular Mode.Ideas about long-term rainfall variability in southern Africa have shifted over time. During the early to mid-19th century, the prevailing narrative was that the climate was progressively desiccating. By the late 19th to early 20th century, when gauged precipitation data became more readily available, debate shifted toward the identification of cyclical rainfall variation. The integration of gauge data, evidence from historical documents, and information from natural proxies such as tree rings during the late 20th and early 21st centuries, has allowed the nature of precipitation variability since ~1800 to be more fully explored.Drought episodes affecting large areas of the SRZ occurred during the first decade of the 19th century, in the early and late 1820s, late 1850s–mid-1860s, mid-late 1870s, earlymid-1880s, and mid-late 1890s. Of these episodes, the drought during the early 1860s was the most severe of the 19th century, with those of the 1820s and 1890s the most protracted. Many of these droughts correspond with more extreme ENSO warm phases.Widespread wetter conditions are less easily identified. The year 1816 appears to have been relatively wet across the Kalahari and other areas of south central Africa. Other wetter episodes were centered on the late 1830s–early 1840s, 1855, 1870, and 1890. In the WRZ, drier conditions occurred during the first decade of the 19th century, for much of the mid-late 1830s through to the mid-1840s, during the late 1850s and early 1860s, and in the early-mid-1880s and mid-late 1890s. As for the SRZ, markedly wetter years are less easily identified, although the periods around 1815, the early 1830s, mid-1840s, mid-late 1870s, and early 1890s saw enhanced rainfall. Reconstructed rainfall anomalies for the SRZ suggest that, on average, the region was significantly wetter during the 19th century than the 20th and that there appears to have been a drying trend during the 20th century that has continued into the early 21st. In the WRZ, average annual rainfall levels appear to have been relatively consistent between the 19th and 20th centuries, although rainfall variability increased during the 20th century compared to the 19th.


2021 ◽  
Vol 14 (1) ◽  
pp. 96
Author(s):  
Niranga Alahacoon ◽  
Mahesh Edirisinghe ◽  
Matamyo Simwanda ◽  
ENC Perera ◽  
Vincent R. Nyirenda ◽  
...  

This study reveals rainfall variability and trends in the African continent using TAMSAT data from 1983 to 2020. In the study, a Mann–Kendall (MK) test and Sen’s slope estimator were used to analyze rainfall trends and their magnitude, respectively, under monthly, seasonal, and annual timeframes as an indication of climate change using different natural and geographical contexts (i.e., sub-regions, climate zones, major river basins, and countries). The study finds that the highest annual rainfall trends were recorded in Rwanda (11.97 mm/year), the Gulf of Guinea (river basin 8.71 mm/year), the tropical rainforest climate zone (8.21 mm/year), and the Central African region (6.84 mm/year), while Mozambique (−0.437 mm/year), the subtropical northern desert (0.80 mm/year), the west coast river basin of South Africa (−0.360 mm/year), and the Northern Africa region (1.07 mm/year) show the lowest annual rainfall trends. There is a statistically significant increase in the rainfall in the countries of Africa’s northern and central regions, while there is no statistically significant change in the countries of the southern and eastern regions. In terms of climate zones, in the tropical northern desert climates, tropical northern peninsulas, and tropical grasslands, there is a significant increase in rainfall over the entire timeframe of the month, season, and year. This implies that increased rainfall will have a positive effect on the food security of the countries in those climatic zones. Since a large percentage of Africa’s agriculture is based only on rainfall (i.e., rain-fed agriculture), increasing trends in rainfall can assist climate resilience and adaptation, while declining rainfall trends can badly affect it. This information can be crucial for decision-makers concerned with effective crop planning and water resource management. The rainfall variability and trend analysis of this study provide important information to decision-makers that need to effectively mitigate drought and flood risk.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

&lt;p&gt;This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25&amp;#176; x 0.25&amp;#176; for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen&amp;#8217;s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22&amp;#176;C to 32&amp;#176;C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20&amp;#176;C to 33&amp;#176;C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.&lt;/p&gt;


2014 ◽  
Vol 18 (5) ◽  
pp. 1653-1662 ◽  
Author(s):  
X. Chen ◽  
D. Naresh ◽  
L. Upmanu ◽  
Z. Hao ◽  
L. Dong ◽  
...  

Abstract. China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the spatial distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within-year and across-year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. As expected, the risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress have high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.


2011 ◽  
Vol 33 (4) ◽  
pp. 395 ◽  
Author(s):  
Fiona Walsh ◽  
Josie Douglas

Improvement in Aboriginal people’s livelihoods and economic opportunities has been a major aim of increased research and development on bush foods over the past decade. But worldwide the development of trade in non-timber forest products from natural populations has raised questions about the ecological sustainability of harvest. Trade-offs and tensions between commercialisation and cultural values have also been found. We investigated the sustainability of the small-scale commercial harvest and trade in native plant products sourced from central Australian rangelands (including Solanum centrale J.M. Black, Acacia Mill. spp.). We used semi-structured interviews with traders and Aboriginal harvesters, participant observation of trading and harvesting trips, and analysis of species and trader records. An expert Aboriginal reference group guided the project. We found no evidence of either taxa being vulnerable to over-harvest. S. centrale production is enhanced by harvesting when it co-occurs with patch-burning. Extreme fluctuations in productivity of both taxa, due to inter-annual rainfall variability, have a much greater impact on supply than harvest effects. Landscape-scale degradation (including cattle grazing and wildfire) affected ecological sustainability according to participants. By contrast, we found that sustainability of bush food trade is more strongly impacted by social and economic factors. The relationship-based links between harvesters and traders are critical to monetary trade. Harvesters and traders identified access to productive lands and narrow economic margins between costs and returns as issues for the future sustainability of harvest and trade. Harvesters and the reference group emphasised that sustaining bush harvest relies on future generations having necessary knowledge and skills; these are extremely vulnerable to loss. Aboriginal people derive multiple livelihood benefits from harvest and trade. Aboriginal custodians and harvester groups involved in recent trade are more likely to benefit from research and development investment to inter-generational knowledge and skill transfer than from investments in plant breeding and commercial horticultural development. In an inductive comparison, our study found there to be strong alignment between key findings about the strategies used by harvesters and traders in bush produce and the ‘desert system’..


Author(s):  
Hudson Ellen Alencar Menezes ◽  
Raimundo Mainar de Medeiros ◽  
José Lucas Guilherme Santos

<p>As variações nas precipitações refletem claramente a dinâmica atmosférica da região, marcada pela intensa variabilidade, onde se observa a atuação da Zona de Convergência Intertropical (ZCIT) com sua atuação entre os meses de janeiro a março, sendo esse período mais chuvoso. As variabilidades espaço temporal no comportamento das chuvas tem sido analisadas e diagnosticadas por vários autores no Nordeste do Brasil (NEB), portanto objetivou-se diagnosticar a variabilidade dos índices pluviométricos em Teresina no Estado do Piauí no período de 1913 a 2010. A análise do comportamento da precipitação nas cidades de grande e médio porte é de extrema importância para o gerenciamento dos recursos hídricos, uma vez que se trata de áreas densamente urbanizadas. Muitas vezes, sem uma estruturação urbana adequada, estas cidades se encaixam perfeitamente nesse contexto. Foram utilizados dados mensais observados e anuais de precipitação pluviométrica no período de 1913 a 2010, com 97 anos de observações. Os resultados mostraram a recorrência de valores máximos de precipitação anual dentro de um intervalo de 18, 11 e 8 anos. Na análise dos desvios-padrões, os resultados mostraram predominância dos desvios negativos em relação aos desvios positivos.</p><p align="center"><strong><em>Climatology of rainfall in the Teresina city, Piauí state, Brazil</em></strong></p><p>Variations in precipitation clearly reflect the atmospheric dynamics of the region, marked by intense variability, where we observe the performance of the Intertropical Convergence Zone (ITCZ) with his performance in the months of January-March, this being more rain tem period. The timeline of rainfall variability in behavior has been analyzed and diagnosed by several authors in Northeast Brazil (NEB), so let's study this variability between the periods 1913 to 2010 of Teresina city.  The behavior of rainfall in cities large and medium sized is of utmost importance to the managerial of water resources, since it is densely urbanized areas. Often without adequate urban structures these cities fit perfectly in this context. We used observed monthly and annual rainfall data for the period 1913-2010, 97 years of observations. The results showed recurrence of maximum values of annual precipitation an interval of 18, 11 and 8 years. In the analysis of standard deviations, the results showed a predominance of negative deviations from the positive deviations.<strong></strong></p><p align="center"><strong><em><br /></em></strong></p>


Sign in / Sign up

Export Citation Format

Share Document