scholarly journals Potential of germanium-based compounds in coronavirus infection

2021 ◽  
Vol 72 (2) ◽  
pp. 245-258
Author(s):  
VIOLETTA NAROKHA ◽  
IRYNA NIZHENKOVSKA ◽  
OLENA KUZNETSOVA

Abstract The first germanium compounds which exhibited immunomodulatory and antiviral effects were sesquioxane-type germanates. To date, more than a dozen compounds containing germanium have been synthesized and are being actively studied. They include germanium carboxylates and citrates, complexes of germanium with resveratrol, daphnetin, mangiferin, chrysin, quercetin, ascorbic and nicotinic acids, amino acids, gamma-lactones, germanium-containing spirulina, yeast and others. Germanium-based compounds have shown the ability to influence the replication of various DNA/RNA viruses, stimulate the body’s natural resistance, prevent the development of metabolic intoxication of various origin, increase the efficacy of vaccines, and prevent the development of excessive accumulation of reactive oxygen species, which plays a decisive role in the development of inflammatory response caused by a viral infection. It seems reasonable to say that germanium-based complex compounds effectively contribute to the preservation of high--energy bonds in the form of ATP, optimize the activity of metabolic processes by re-oxygenation, and exhibit antimicrobial activity. The purpose of this review is to summarize the pharmacological potential of various germanium-based compounds studied nowadays, taking into account their mechanisms of action, and to analyze their prospects in the development of integrated approaches in the prevention and treatment of SARS-CoV-2 infection.

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jianan Geng ◽  
Xiaoyan Yu ◽  
Chunyu Liu ◽  
Chengbo Sun ◽  
Menghuan Guo ◽  
...  

Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world; until now there is no specific drug available. In this work, we use herba artemisiae capillaris extract (HACE) to alleviate renal fibrosis characterized by the excessive accumulation of extracellular matrix (ECM) in rats, aiming to investigate the protective effect of the HACE on DN. We found that the intragastric treatment of high-dose HACE could reverse the effect of streptozotocin not only to decrease the level of blood glucose and blood lipid in different degree but also further to improve renal functions. It is worth mentioning that the effect of HACE treatment was comparable to the positive drug benazepril. Moreover, we found that HACE treatment could on one hand inhibit oxidative stress in DN rats through regulating enzymatic activity for scavenging reactive oxygen species and on the other hand increase the ECM degradation through regulating the activity of metalloproteinase-2 (MMP-2) and the expression of tissue transglutaminase (tTG), which explained why HACE treatment inhibited ECM accumulation. On the basis of above experimental results, we conclude that HACE prevents DN development in a streptozotocin-induced DN rat model, and HACE is a promising candidate to cure DN in clinic.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tingyang Zhou ◽  
Chia-Chen Chuang ◽  
Li Zuo

Myocardial ischemia-reperfusion (I/R) injury is experienced by individuals suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. The occlusion of blood flow to the tissue, termed ischemia, can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue can result in further damage. Reactive oxygen species (ROS) have been studied intensively to reveal their role in myocardial I/R injury. Under normal conditions, ROS function as a mediator in many cell signaling pathways. However, stressful environments significantly induce the generation of ROS which causes the level to exceed body’s antioxidant defense system. Such altered redox homeostasis is implicated in myocardial I/R injury. Despite the detrimental effects from ROS, low levels of ROS have been shown to exert a protective effect in the ischemic preconditioning. In this review, we will summarize the detrimental role of ROS in myocardial I/R injury, the protective mechanism induced by ROS, and potential treatments for ROS-related myocardial injury.


1989 ◽  
Vol 67 (12) ◽  
pp. 1549-1559 ◽  
Author(s):  
Madhu Gupta ◽  
Pawan K. Singal

Effects of xanthine (2 mM) and xanthine oxidase (10 U/L) perfusion on myocardial function, lipid peroxide content, high-energy phosphates and their metabolites, and ultrastructure were examined in isolated perfused rat hearts to define the time course of myocardial injury due to exogenous supply of active oxygen species. Peak-developed force and dF/dt showed a decline within 5 min and complete contractile failure was seen at 20 min. Resting tension was higher at 10 min and reached a maximum value of 400% at 40 min. These changes in contractile parameters were reduced by superoxide dismutase (1.2 × 105 U/L), catalase (2 and 4 × 104 U/L), and mannitol (10 and 20 mM). Lipid peroxide content was significantly higher at 5 min and rose continuously with xanthine – xanthine oxidase (X–XO) perfusion. A close correlation was noted (r = 0.935) between increased lipid peroxide content and a decrease in peak-developed force. Creatine phosphate and adensoine triphosphate (ATP) showed a time-dependent decrease due to X–XO perfusion. Loss of ATP also correlated (r = 0.819) with the contractile failure. Adenosine diphosphate showed an increase at 5 min followed by a decrease at 20 and 40 min. Adenosine monophosphate, adenosine, and creatine content increased with X–XO perfusion. In a semiquantitative morphometric study, significant myocardial and vascular changes became apparent only after 10 min of X–XO perfusion. When a 5-min perfusion with X–XO was followed by a control perfusion, a recovery of developed force and normal structure was noted at 40 min. These data show that X–XO induced contractile failure involves partially reduced forms of oxygen such as superoxide, hydroxyl radicals, and hydrogen peroxide. The negative inotropic effect of a vascular supply of these active oxygen species may be related to increased lipid peroxidation as well as the loss of high-energy phosphates. Structural damage to myocytes and blood vessels and a rise in resting tension were delayed events requiring a continuous and longer exposure to radical species.Key words: myocardial failure, oxygen radicals, lipid peroxidation, myocardial high-energy phosphates, myocardial cell damage, antioxidant protection.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Sergio Rius-Pérez ◽  
Isabel Torres-Cuevas ◽  
Iván Millán ◽  
Ángel L. Ortega ◽  
Salvador Pérez

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is a transcriptional coactivator described as a master regulator of mitochondrial biogenesis and function, including oxidative phosphorylation and reactive oxygen species detoxification. PGC-1α is highly expressed in tissues with high energy demands, and it is clearly associated with the pathogenesis of metabolic syndrome and its principal complications including obesity, type 2 diabetes mellitus, cardiovascular disease, and hepatic steatosis. We herein review the molecular pathways regulated by PGC-1α, which connect oxidative stress and mitochondrial metabolism with inflammatory response and metabolic syndrome. PGC-1α regulates the expression of mitochondrial antioxidant genes, including manganese superoxide dismutase, catalase, peroxiredoxin 3 and 5, uncoupling protein 2, thioredoxin 2, and thioredoxin reductase and thus prevents oxidative injury and mitochondrial dysfunction. Dysregulation of PGC-1α alters redox homeostasis in cells and exacerbates inflammatory response, which is commonly accompanied by metabolic disturbances. During inflammation, low levels of PGC-1α downregulate mitochondrial antioxidant gene expression, induce oxidative stress, and promote nuclear factor kappa B activation. In metabolic syndrome, which is characterized by a chronic low grade of inflammation, PGC-1α dysregulation modifies the metabolic properties of tissues by altering mitochondrial function and promoting reactive oxygen species accumulation. In conclusion, PGC-1α acts as an essential node connecting metabolic regulation, redox control, and inflammatory pathways, and it is an interesting therapeutic target that may have significant benefits for a number of metabolic diseases.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 576 ◽  
Author(s):  
Tomomi Takano ◽  
Kumi Satoh ◽  
Tomoyoshi Doki ◽  
Taishi Tanabe ◽  
Tsutomu Hohdatsu

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 μM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 μM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


2004 ◽  
Vol 2004 (5) ◽  
pp. 314-320 ◽  
Author(s):  
Kevin S. Gould

Anthocyanins, the pigments responsible for spectacular displays of vermilion in the leaves of deciduous trees, have long been considered an extravagant waste of a plant's resources. Contemporary research, in contrast, has begun to show that the pigments can significantly influence the way a leaf responds to environmental stress. Anthocyanins have been implicated in tolerance to stressors as diverse as drought, UV-B, and heavy metals, as well as resistance to herbivores and pathogens. By absorbing high-energy quanta, anthocyanic cell vacuoles both protect chloroplasts from the photoinhibitory and photooxidative effects of strong light, and prevent the catabolism of photolabile defence compounds. Anthocyanins also mitigate photooxidative injury in leaves by efficiently scavenging free radicals and reactive oxygen species. Far from being a useless by-product of the flavonoid pathway, these red pigments may in some instances be critical for plant survival.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changchao Huan ◽  
Yao Xu ◽  
Wei Zhang ◽  
Tingting Guo ◽  
Haochun Pan ◽  
...  

Liquorice is a traditional medicine. Triterpenoids such as glycyrrhizin and glycyrrhetinic acid are the main active constituents of liquorice. Studies have revealed that these compounds exert inhibitory effects on several viruses, including SARS-CoV-2. The main mechanisms of action of these compounds include inhibition of virus replication, direct inactivation of viruses, inhibition of inflammation mediated by HMGB1/TLR4, inhibition of β-chemokines, reduction in the binding of HMGB1 to DNA to weaken the activity of viruses, and inhibition of reactive oxygen species formation. We herein review the research progress on the antiviral effects of glycyrrhizin and its derivatives. In addition, we emphasise the significance of exploring unknown antiviral mechanisms, structural modifications, and drug combinations in future studies.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 743
Author(s):  
Georgios Rossos ◽  
Sotiris K. Hadjikakou ◽  
Nikolaos Kourkoumelis

Benzimidazole derivatives have gained attention recently due to their wide pharmacological activity acting as anti-inflammatory, hypotensive, analgesic, and anti-aggregatory agents. They are also common ligands in transition metal coordination chemistry, forming complex compounds with enhanced biological properties, especially in targeted cancer therapy. A key issue to understand anti-tumour effects is drug permeability through cellular membranes, as poor permeability outcomes can avert further futile drug development. In this work, we conducted atomistic molecular dynamics (MD) simulations and biased MD simulations to explore the interactions of 2-benzimidazolyl-urea with a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) together with a previously synthesized copper(II) complex compound. The aim was to study the permeability of these compounds by assessing their free energy profile along the bilayer normal. The simulations indicated that both the ligand (2-benzimidazolyl-urea, BZIMU) and the complex show a similar behaviour, yielding high energy barriers for the permeation process. However, with increasing concentration of BZIMU, the molecules tend to aggregate and form a cluster, leading to the formation of a pore. Clustering and pore formation can possibly explain the previously observed cytotoxicity of the BZIMU molecule via membrane damage.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Dave Speijer ◽  
Michael Hammond ◽  
Julius Lukeš

ABSTRACT When trying to reconstruct the evolutionary trajectories during early eukaryogenesis, one is struck by clear differences in the developments of two organelles of endosymbiotic origin: the mitochondrion and the chloroplast. From a symbiogenic perspective, eukaryotic development can be interpreted as a process in which many of the defining eukaryotic characteristics arose as a result of mutual adaptions of both prokaryotes (an archaeon and a bacterium) involved. This implies that many steps during the bacterium-to-mitochondrion transition trajectory occurred in an intense period of dramatic and rapid changes. In contrast, the subsequent cyanobacterium-to-chloroplast development in a specific eukaryotic subgroup, leading to the photosynthetic lineages, occurred in a full-fledged eukaryote. The commonalities and differences in the two trajectories shed an interesting light on early, and ongoing, eukaryotic evolutionary driving forces, especially endogenous reactive oxygen species (ROS) formation. Differences between organellar ribosomes, changes to the electron transport chain (ETC) components, and mitochondrial codon reassignments in nonplant mitochondria can be understood when mitochondrial ROS formation, e.g., during high energy consumption in heterotrophs, is taken into account. IMPORTANCE The early eukaryotic evolution was deeply influenced by the acquisition of two endosymbiotic organelles - the mitochondrion and the chloroplast. Here we discuss the possibly important role of reactive oxygen species in these processes.


Sign in / Sign up

Export Citation Format

Share Document