scholarly journals Alterations in health-related fatty acids in buffalo milk after processing to traditional dairy products

2021 ◽  
Vol 25 (2) ◽  
pp. 211-220
Author(s):  
Sylvia Ivanova ◽  
Yordanka Ilieva ◽  
Pencho Penchev

Abstract Milk provides some beneficial fatty acids which in dairy processing are subjected to pasteurization and fermentation. With the aim to assess such changes, aliquot parts of milk from 12 buffaloes were pooled and processed to germinated yoghurt and brined cheese, and to non-germinated curd – the respective samples of raw and dairy material subjected to lipid analysis. The results show that in cheese positive and negative changes are generally balanced, rumenic acid decreasing and other CLAs altered but not total CLA and PUFA; omega ratio and atherogenicity index worsened to little extent, due to adverse change in n-3, myristic and lauric acid. In yoghurt and curd CLA dramatically decreased, excluding rumenic acid; but vaccenic acid increased, though total trans isomers decreased; the worsened n-6/n-3 ratio and atherogenicity index is mostly because of the adverse effect on PUFAn-3 but also on myristic and lauric acid. In all products SFA and MUFA did not change, including palmitic, stearic, and oleic acid. It can be concluded that the decrease of CLA in yoghurt and curd is partially compensated by the increase in the vaccenic acid, while cheese making altered individual isomers but not groups of beneficial acids.

2020 ◽  
Vol 12 (16) ◽  
pp. 6616 ◽  
Author(s):  
Zsolt Becskei ◽  
Mila Savić ◽  
Dragan Ćirković ◽  
Mladen Rašeta ◽  
Nikola Puvača ◽  
...  

Water buffalo (Bubalus bubalis) conservation in Serbia is under an in situ program, but additional efforts are needed to ensure the development of this animal’s genetic resources biodiversity. This research aims to describe challenges and possible strategies for sustainable water buffalo milk production. In this study, the physicochemical characteristics of buffalo milk and buffalo dairy products (cheese, butter, and kajmak) were determined. Furthermore, amino and fatty acids composition and the related health lipid indices (atherogenic and thrombogenic) were assessed. The findings support the fact that buffalo milk is a reliable source of high-quality nutrients (dry matter: 16.10%, fat: 6.02%, protein: 4.61%). Leucine, lysine, and valine content were found to be high in buffalo milk and cheese. A substantial quantity of non-essential glutamic and aspartic amino acids was observed in milk, as well as glutamic acid and tyrosine in cheese. It was established that milk protein of buffalo cheese had a favorable proportion of essential and non-essential amino acids (61.76%/38.24%). The results revealed significant differences (p < 0.05) in fatty acid profiles among the three dairy products for saturated short-chain, n-3, and n-6 fatty acids. Conversely, no significant difference (p < 0.05) was observed in monounsaturated fatty acids content. Kajmak showed the most favorable anti-atherogenic and anti-thrombogenic properties due to lower saturated and higher polyunsaturated fatty acid content. These results confirmed that buffalo milk could be successfully used in producing high-quality traditional dairy products with added value and beneficial characteristics from the aspect of a healthy diet. Furthermore, it could actively contribute to the promotion of sustainable production of buffaloes and strengthen the agricultural production of rural areas and their heritage.


2014 ◽  
Vol 57 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Agata Adamska ◽  
Jarosława Rutkowska ◽  
Małgorzata Tabaszewska ◽  
Małgorzata Białek1

Abstract. Local bovine breeds are usually more resistant to diseases and better adapted to environmental and nutritional conditions than the imported ones. The aim of this study was to assess the content of individual health-related fatty acids in milk of Polish Red and White breed regarding the composition of forages. One herd of cows (n=15) were fed seasonally using locally produced forages: grazed grass, containing high amounts (55 g·100 g-1 fatty acid on average) of polyunsaturated fatty acid, and preserved forages, rich in saturated fatty acid (30 g·100 g-1 fatty acid on average). The content of butyric acid in milk averaged 4.21 g·100 g-1 fatty acid regardless of season and was higher compared to that reported for other breeds. Milk from the summer season had high content (14.67 g·100 g-1 fatty acid) of total short-chain saturated fatty acid (C4:0-C12:0), that from non-pasture season (winter) had high content of odd- and branched chain fatty acids (6.28 g·100 g-1 fatty acid). Milk fat of studied cows had relatively lower content of nutritionally controversial myristic C14:0 and palmitic C16:0 acids as comparing to milk in other breeds and proved an excellent source of vaccenic acid trans-11 C18:1 and conjugated linoleic acids cis-9, trans-11 C18:2, especially during the grazing season.


2020 ◽  
Vol 82 (1) ◽  
pp. 22-32
Author(s):  
I.L. Garmasheva ◽  
◽  
N.K. Kovalenko ◽  
L.T. Oleschenko ◽  
◽  
...  

Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


2021 ◽  
Vol 22 (6) ◽  
pp. 2798
Author(s):  
Zoran Todorović ◽  
Siniša Đurašević ◽  
Maja Stojković ◽  
Ilijana Grigorov ◽  
Slađan Pavlović ◽  
...  

Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1366
Author(s):  
Cristina Soares ◽  
Sara Sousa ◽  
Susana Machado ◽  
Elsa Vieira ◽  
Ana P. Carvalho ◽  
...  

The total lipid content and lipidic profile of seaweeds harvested in the North Coast and purchased in Portugal were determined in this paper. The amount of total lipids in the different species of seaweeds varied between 0.7 ± 0.1% (Chondrus crispus) and 3.8 ± 0.6% (Ulva spp.). Regarding the fatty acid content, polyunsaturated fatty acids (PUFA) ranged between 0–35%, with Ulva spp. presenting the highest amount; monounsaturated fatty acids (MUFA) varied between 19 and 67%; and saturated fatty acids (SFA) were predominant in C. crispus (45–78%) and Gracilaria spp. (36–79%). Concerning the nutritional indices, the atherogenicity index (AI) was between 0.4–3.2, the thrombogenicity index (TI) ranged from 0.04 to 1.95, except for Gracilaria spp., which had a TI of 7.6, and the hypocholesterolemic/hypercholesterolemic ratio (HH) values ranged between 0.88–4.21, except for Gracilaria spp., which exhibited values between 0.22–9.26. The n6/n3 ratio was below 1 for most of the species evaluated, except for Ascophyllum nodosum, which presented a higher value, although below 2. Considering the PUFA/SFA ratio, seaweeds presented values between 0.11–1.02. The polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHCs) contamination of seaweeds under study was also quantified, the values found being much lower than the maximum levels recommended for foodstuff.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 702
Author(s):  
Alaitz Berriozabalgoitia ◽  
Juan Carlos Ruiz de Gordoa ◽  
Mertxe de Renobales ◽  
Gustavo Amores ◽  
Luis Javier R. Barron ◽  
...  

The questioned reliability of 15:0, 17:0, and trans9-16:1 acids as biomarkers of dairy fat intake also questions the relationship between the intake of these products and their health effects. Two studies were conducted in the same geographical region. In an intervention study, volunteers followed a diet rich in dairy products followed by a diet without dairy products. Plasma and erythrocyte fatty acids (FA) were analyzed, and their correlations with dairy product intakes were tested. The FA biomarkers selected were validated in the Gipuzkoa cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC) observational study. The correlation coefficients between plasma concentrations of iso16:0, iso17:0, trans11-18:1, cis9, trans11-18:2, and cis6-18:1 and the dairy fat ingested are similar in both studies, indicating that their concentration increases by 0.8 µmol/L per gram of dairy fat ingested. The biomarkers are positively related to plasma triglycerides (r = 0.324 and 0.204 in the intervention and observational studies, respectively) and total cholesterol (r = 0.459 and 0.382), but no correlation was found between the biomarkers and atherogenicity indexes. In conclusion, the sum of the plasma concentration of the selected FAs can be used as biomarkers of dairy product consumption. A linear relationship exists between their plasma concentrations and ruminant product intake. These biomarkers allow for obtaining consistent relationships between dairy intake and plasma biochemical parameters.


2006 ◽  
Vol 282 (7) ◽  
pp. 4613-4625 ◽  
Author(s):  
Markus Fritz ◽  
Heiko Lokstein ◽  
Dieter Hackenberg ◽  
Ruth Welti ◽  
Mary Roth ◽  
...  

Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2–3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Δ3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.


Sign in / Sign up

Export Citation Format

Share Document