scholarly journals Physiological performance of sunflower genotypes under combined salt and drought stress environment

2018 ◽  
Vol 77 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Muhammad Umar ◽  
Zamin Shaheed Siddiqui

AbstractThe physiological performance of some sunflower genotypes (S.28111, SF0049, Hysun-33, Hysun-39) under salt, drought stress separately and in combination was examined. Salt, drought and a combination of these stresses were applied to plants by gradual increments. The plants were exposed to stress for two weeks. Relative water content, osmotic potential, stomatal conductance, performance index, dark adapted quantum yield and chlorophyll contents were reduced upon salinity and drought stresses. However, when plants were subjected to a combination of these stresses, a greater reduction in all tested attributes was observed. Proline and carotenoid contents in drought stress were elevated compared to salt stress. Superoxide dismutase (SOD) and catalase (CAT) showed the highest activity in individual salt and drought stress with less accumulation of H2O2. Combined stress reduced the activity of antioxidant enzymes which ultimately decreased the physiological performance of sunflower plants. However, among the tested genotypes, S.28111 and SF0049 were found to be more tolerant to drought, salt and combined stress than both Hysun genotypes. The physiological performance of genotypes against salinity and drought individually and in combination is discussed in detail.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramadan Shemi ◽  
Rui Wang ◽  
El-Sayed M. S. Gheith ◽  
Hafiz Athar Hussain ◽  
Saddam Hussain ◽  
...  

AbstractDrought is one of the major environmental stresses that negatively affect the maize (Zea mays L.) growth and production throughout the world. Foliar applications of plant growth regulators, micronutrients or osmoprotectants for stimulating drought-tolerance in plants have been intensively reported. A controlled pot experiment was conducted to study the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) foliar applications on morphology, chlorophyll contents, relative water content (RWC), gas-exchange attributes, activities of antioxidant enzymes, accumulations of reactive oxygen species (ROS) and osmolytes, and yield attributes of maize plants exposed to two soil water conditions (85% field capacity: well-watered, 50% field capacity: drought stress) during critical growth stages. Drought stress significantly reduced the morphological parameters, yield and its components, RWC, chlorophyll contents, and gas-exchange parameters except for intercellular CO2 concentration, compared with well water conditions. However, the foliar applications considerably enhanced all the above parameters under drought. Drought stress significantly (p < 0.05) increased the hydrogen peroxide and superoxide anion contents, and enhanced the lipid peroxidation rate measured in terms of malonaldehyde (MDA) content. However, ROS and MDA contents were substantially decreased by foliar applications under drought stress. Antioxidant enzymes activity, proline content, and the soluble sugar were increased by foliar treatments under both well-watered and drought-stressed conditions. Overall, the application of GB was the most effective among all compounds to enhance the drought tolerance in maize through reduced levels of ROS, increased activities of antioxidant enzymes and higher accumulation of osmolytes contents.


2013 ◽  
Vol 72 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Zamin S. Siddiqui

Abstract The effects of double stress environment i.e. lead (heavy metal) and NaCl (saline) on the activity of antioxidant enzymes in Vigna radiata seedling were studied. The antioxidant activities of enzymes, i.e of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase and their activity proportions were examined. Superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase and glutathione reductase activities were substantially increased in a combined stress environment as compared to catalase. Further, in comparison with catalase and ascorbate peroxidase, glutathione reductase showed increased activities together with superoxide dismutase in a combined stress environment. Superoxide dismutase and glutathione reductase showed higher activity proportion in combined treatment. Physiological role of these enzymes in stress tolerance mechanism is discussed.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
M Miftahudin ◽  
Rury Eryna Putri ◽  
Tatik Chikmawati

Abstract. Miftahudin, Putri RE, Chikmawati T. 2020. Vegetative morphophysiological responses of four rice cultivars to drought stress. Biodiversitas 21: 3727-3734. Each rice genotype develops certain morphophysiological responses to drought stress. The study aimed to analyze the morphophysiological responses of vegetative aspect of four rice cultivars to drought stress. A 10% Polyethylene glycol-6000 was added to a Yoshida nutrient solution medium as a drought stress stimulant for four rice cultivars, i.e., IR64, Hawara Bunar, Situbagendit, and Inpago 10. Fourteen-days-old rice seedlings were grown on the media with and without drought stress treatment for 9 days, and morphophysiological characters of vegetative aspects were observed. Drought stress inhibited the shoot growth of cv. Hawara Bunar, but increased shoot growth of cv. Inpago 10. The physiological responses in the form of leaf relative water content, proline, malondialdehyde (MDA), and total chlorophyll contents in cv. Hawara Bunar was inversely proportional to those of cv. IR64 showed an inferior response to drought stress. The rice cv. Hawara Bunar might develop better response mechanisms to drought than that of cv. IR64. The physiological responses of cvs. Situbagendit and Inpago 10 were in between the other two cultivars. We conclude that the variation of morphophysiological responses to drought stress among rice cultivars is an indicator of tolerance capability to drought that could be used as early-growth selection criteria in rice breeding programs for drought tolerance.


2021 ◽  
Author(s):  
Jazba Anum ◽  
Charlotte O’Shea ◽  
M Zeeshan Hyder ◽  
Sumaira Farrukh ◽  
Karen Skriver ◽  
...  

Abstract Germin-like proteins (GLPs) are ubiquitous plant proteins, which play significant role in plant responses against various abiotic stresses. However, the potential functions of GLPs in rice (Oryza Sativa) against salt and drought stress are still unclear. In this study, transcriptional variation of 8 OsGLP genes (OsGLP3-6, OsGLP4-1, OsGLP8-4, OsGLP8-7, OsGLP8-10, OsGLP8-11 and OsGLP8-12) was analyzed in leaves and roots of two economically important Indica rice cultivars, KS282 and Super Basmati under salt and drought stress at early seedling stage. The relative expression analysis from qRT-PCR indicated the highest increase in expression of OsGLP3-6 in leaves and roots of both rice varieties with a significantly higher expression in KS282. Moreover, relative change in expression of OsGLP8-7, OsGLP8-10 and OsGLP8-11 under salt stress and OsGLP8-7 under drought stress was also commonly higher in leaves and roots of KS282 as compared to Super Basmati. Whereas, OsGLP3-7 and OsGLP8-12 after salt stress and OsGLP8-4 and OsGLP8-12 after drought stress were observed with higher relative expression in roots of Super Basmati than KS282. Importantly, the OsGLP3-6 and OsGLP4-1 from chromosome 3 and 4 respectively showed higher expression in leaves whereas most of the OsGLP genes from chromosome 8 exhibited higher expression in roots. Overall, as a result of this comparative analysis, OsGLP genes showed both general and specific expression profiles depending upon a specific rice variety, stress condition as well as tissue type. These results will increase our understanding of role of OsGLP genes in rice crop and provide useful information for the further in-depth research on their regulatory mechanisms in response to these stress conditions.


2014 ◽  
Vol 2 (2) ◽  
pp. 88-92 ◽  
Author(s):  
Jafar Abili ◽  
Sajjad Zare

Salinity is one of the major stresses in arid and semi-arid regions causing adverse effects at physiological, biochemical, and molecular levels, limiting crop productivity. In this research, three canola cultivars (Licord, Talayeh, Zarfam) were compared at 5 salinity levels (control, 50, 100, 150 and 200 mM) for their catalase, guaiacol peroxidase, superoxide dismutase activity,proline and yield in a completely randomized design with 3 replications. In our study, we found that NaCl concentrations greater than 150 and 200 mM caused the irreversible disorders. Increased salt concentrations led to significant changes in the levels of antioxidative enzymes and proline in three canola cultivars. Also, yield rates in three varieties decreased in the presence of NaCl concentrations.


2017 ◽  
Vol 76 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Roomana Yasmeen ◽  
Zamin Shaheed Siddiqui

AbstractThe physiological response of crop plants againstTrichoderma harzianum(Th-6) in a saline habitat was studied.Trichoderma harzianum(Th-6) is an endophytic fungus that shows salt tolerance and establishes a symbiotic relationship with a host plant. To evaluate the role ofTrichoderma harzianum(Th-6) in mitigating the consequences of salinity stress on crop plants, seeds of maize and rice were coated withTrichodermabefore sowing and salt treatment. Later, after germination, twenty-one day old seedlings were subjected to NaCl concentrations (50, 100 and 150 mM). Salinity negatively affected all investigated physiological parameters in both crops. Treatment of seeds withTrichodermaimproved plant growth andTh-treated plants exhibited substantial physiological adjustment in a saline environment compared toTh-untreated plants. TheTh-treated plants under salt stress showed higher relative water content and stomatal conductance, better photosynthetic performance and higher pigment concentrations, as well as higher catalase and superoxide dismutase activities. Moreover, proline content in salt stress environment was higher inTh-treated plants, while H2O2content declined. The physiological role ofTrichoderma harzianumin mitigating the salt related consequences of both crop plants is discussed.


2014 ◽  
Vol 73 (1) ◽  
pp. 312-321 ◽  
Author(s):  
Zamin S. Siddiqui ◽  
Jung-Il Cho ◽  
Sung-Han Park ◽  
Taek-Ryoun Kwon ◽  
Gang-Seob Lee ◽  
...  

Abstract Phenotyping of rice (Oryza sativa L. cv. Donggin) in salt stress environment using infrared imaging was conducted. Results were correlated with the most frequently used physiological parameters such as stomatal conductance, relative water content and photosynthetic parameters. It was observed that stomatal conductance (R2 = -0.618) and relative water content (R2 = -0.852) were significantly negatively correlated with average plant temperature (thermal images), while dark-adapted quantum yield (Fv/Fm, R2 = -0.325) and performance index (R2 = -0.315) were not consistent with plant temperature. Advantages of infrared thermography and utilization of this technology for the selection of stress tolerance physiotypes are discussed in detail.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiujie Yin ◽  
Taotao He ◽  
Kun Yi ◽  
Yihang Zhao ◽  
Yao Hu ◽  
...  

AbstractThe forage species Caucasian clover (Trifolium ambiguum M. Bieb.), a groundcover plant, is resistant to both cold and drought. However, reference genes for qRT-PCR-based analysis of Caucasian clover are lacking. In this study, 12 reference genes were selected on the basis of transcriptomic data. These genes were used to determine the most stably expressed genes in various organs of Caucasian clover under cold, salt and drought stress for qRT-PCR-based analysis. Reference gene stability was analyzed by geNorm, NormFinder, BestKeeper, the ∆Ct method and RefFinder. Under salt stress, RCD1 and PPIL3 were the most stable reference genes in the leaves, and NLI1 and RCD1 were the most stable references genes in the roots. Under low-temperature stress, APA and EFTu-GTP were the most stable reference genes in the leaves, and the RCD1 and NLI2 genes were highly stable in the roots. Under 10% PEG-6000 stress, NLI1 and NLI2 were highly stable in the leaves, and RCD1 and PPIL3 were the most stable in the roots. Overall, RCD1 and NLI2 were the most stable reference genes in organs under normal conditions and across all samples. The most and least stable reference genes were validated by assessing their appropriateness for normalization via WRKY genes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lu Lu ◽  
Xinying Chen ◽  
Pengkai Wang ◽  
Ye Lu ◽  
Jingbo Zhang ◽  
...  

Abstract Background The CIPKs are a group of plant-specific Ser/Thr protein kinases acting in response to calcium signaling, which plays an important role in the physiological and developmental adaptation of plants to adverse environments. However, the functions of halophyte-derived CIPKs are still poorly understood, that limits a potential application of CIPKs from halophytes for improving the tolerance of glycophytes to abiotic stresses. Results In this study, we characterized the NtCIPK11 gene from the halophyte Nitraria tangutorum and subsequently analyzed its role in salt and drought stress tolerance, using Arabidopsis as a transgenic model system. NtCIPK11 expression was upregulated in N. tangutorum root, stem and blade tissues after salt or drought treatment. Overexpressing NtCIPK11 in Arabidopsis improved seed germination on medium containing different levels of NaCl. Moreover, the transgenic plants grew more vigorously under salt stress and developed longer roots under salt or drought conditions than the WT plants. Furthermore, NtCIPK11 overexpression altered the transcription of genes encoding key enzymes involved in proline metabolism in Arabidopsis exposed to salinity, however, which genes showed a relatively weak expression in the transgenic Arabidopsis undergoing mannitol treatment, a situation that mimics drought stress. Besides, the proline significantly accumulated in NtCIPK11-overexpressing plants compared with WT under NaCl treatment, but that was not observed in the transgenic plants under drought stress caused by mannitol application. Conclusions We conclude that NtCIPK11 promotes plant growth and mitigates damage associated with salt stress by regulating the expression of genes controlling proline accumulation. These results extend our understanding on the function of halophyte-derived CIPK genes and suggest that NtCIPK11 can serve as a candidate gene for improving the salt and drought tolerance of glycophytes through genetic engineering.


Sign in / Sign up

Export Citation Format

Share Document