scholarly journals Investigation of Lead Removal from Drinking Water Using Different Sorbents

2020 ◽  
Vol 27 (1) ◽  
pp. 67-82
Author(s):  
Ramunė Albrektienė ◽  
Dainius Paliulis

AbstractLead is a heavy metal with strong toxic properties. This chemical element is found in wastewater and sometimes in drinking water. The article deals with the removal of lead(II) ions from polluted water using a sorption process to determine the most effective sorbent for the removal of lead(II) ions. Three sorbents were used in the research: clay, sapropel, and iron sludge. All three sorbents investigated reduce the concentration of lead(II) ions in water: clay efficiency was of 65.7–90 %, sapropel of 94.3–100 %, and iron sludge of 84.3–97 %, depending on sorbent type and contact duration. The research has shown that the most effective way to remove lead(II) ions from the test water is sapropel. Using different amounts of sapropel (1, 2, 3, 4, 5, 6 g/dm3 and 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 g/dm3) and different duration of contact (30, 60, 90, 120 and 150 minutes), the concentration of lead(II) ions in the test water after purification did not exceed the permissible values for drinking water (10 μg/dm3), so that the lowest sapropel content of 0.1 g/dm3 can be used for sorption. Lead(II) ions are most effectively removed when contact time is 30 min.

2016 ◽  
Vol 75 (2) ◽  
Author(s):  
Irma KRESNAWATY ◽  
. TRI-PANJI

SummaryHeavy metal in waste water potentiallycauses environmental pollution. Generally,heavy metal pollutions come from metalplating, textile, latex-rubber goods, and otherindustries. The process of latex-rubber goodindustries uses heavy metal in the form ofZnO as accelerator for rubber vulcanizationprocess, so that Zn 2+ ion exists in wastewatereffluents in concentration as much as 300 ppm,whereas the maximum limit allowed is 2.5 ppm.The chemical way generally used to decreaseZn 2+ concentration in wastewater effluents isby adding bases, NaOH or Ca(OH) 2 until pHreached 11, hence this metal is precipitated asits hydroxide. However, the way is done, isvery high cost and has a risk of the emergencesecondary pollution caused by excess base. Analternative way to absorb Zn 2+ consideredinexpensive is by using biosorbent in the formof Saccharomyces cerevisiae biomass frombioethanol industrial waste. The research wasconducted using artificial wastewater withZn 2+ ion concentration of 300 ppm and the pHwas adjusted to the range between 3-7.Biosorption was conducted by addition of freeS. cerevisiae biomass as well as byimmobilized cells on filter paper. Observationwas carried out for Zn 2+ concentration aftercontact time of two and five hours. The resultsof the research indicated that free andimmobilized S. cerevisiae biomass couldabsorb Zn 2+ metal and decreased itsconcentration from 250-300 ppm to 20-50 ppm.The optimum contact time was reached at onehour, while optimum sorption process occurredat pH 5. At low concentration, less than20 ppm S. cerevisiae biomass absorbed lessZn 2+ The NaOH-treated biomass showed bettersorption capabilities compared to cells treatedby formaldehyde or heat treatments. Thecontinue experiment showed the high capacityof biomass treated with NaOH to absorb Zn 2+ ,until concentration 24,02- 47,95 ppm in thefirst sampling and 1,15-10,99 ppm in thesecond sampling. Combination adsorptionprocess using charcoal and zeolite couldadsorp remain concentration of Zn 2+ , so thatcould reached the limit concentration-allowed.RingkasanLogam berat di dalam air limbahmerupakan penyebab pencemaran lingkunganyang potensial. Pencemaran logam berat padaumumnya berasal dari industri penyepuhanlogam, tekstil, barang jadi lateks, serta industrilain. Pada proses industri barang jadi lateksdigunakan logam berat dalam bentuk ZnOsebagai akselerator proses vulkanisasi karet,sehingga ion Zn 2+ terbawa dalam air limbahindustri barang jadi dengan konsentrasimencapai 300 ppm, sedangkan ambang bataskonsentrasi yang diperbolehkan maksimaladalah 2,5 ppm. Cara kimia yang umum di-gunakan untuk menurunkan kandunganZn 2+ dalam air limbah adalah dengan caramenambahkan basa, umumnya NaOH atauCa(OH) 2 , sampai pH sekitar 11, sehinggalogam berat ini diendapkan sebagai hidroksida-nya. Namun demikian, cara ini sangat mahaldan beresiko munculnya pencemaran sekunderakibat kelebihan basa. Salah satu alternatifyang murah untuk penyerapan Zn 2+ adalahmenggunakan biosorben berupa biomassaSaccharomyces cerevisiae yang berasal darilimbah pabrik bioetanol.Penelitian dilakukan dengan mengguna-kan air limbah artifisial yang mengandung ionZn 2+ dengan konsentrasi 300 ppm. Limbahartifisial diatur pHnya antara 3-7. Biosorpsidilakukan dengan menambahkan biomassaS. cerevisiae bebas maupun yang diamobilisasidengan kertas saring. Pengamatan dilakukanterhadap kandungan Zn 2+ setelah waktu kontakdua dan lima jam. Hasil penelitian menunjuk-kan bahwa biomassa S. cerevisiae bebasmaupun amobil mampu menyerap logam Zn 2+dan menurunkan konsentrasinya dari 250-300 ppm menjadi 20-50 ppm. Waktu kontakoptimum dicapai setelah satu jam, sedangkanproses sorpsi optimum terjadi pada pH 5.Biomassa S. cerevisiae kurang efektifmenyerap logam Zn 2+ pada konsentrasi rendah,di bawah 20 ppm. Perlakuan biomassa meng-gunakan NaOH menunjukkan kemampuanpenyerapan yang lebih baik jika dibandingkandengan yang diperlakukan menggunakanformaldehida dan pemanasan. Percobaan padaaliran kontinyu yang menggunakan biomassayang diperlaukan menggunakan NaOH,menunjukkan bahwa limbah artifisial Zn 2+dapat diturunkan sampai konsentrasi 24,02-47,95 ppm pada sampling pertama, dan 1,15-10,99 ppm pada sampling kedua. Kombinasipenyerapan menggunakan arang aktif danzeolit dapat menyerap sisa Zn 2+ mencapai batasyang diperbolehkan.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1407
Author(s):  
Kanfolo Franck Herve YEO ◽  
Chaokun Li ◽  
Hui Zhang ◽  
Jin Chen ◽  
Wendong Wang ◽  
...  

More than 170 million individuals have been influenced by arsenic (As) because of the ingestion of As-polluted groundwater. The presence of As in water bodies, particularly groundwater, has been found to become a widespread issue in the past few decades. Because arsenic causes extreme wellbeing impacts, even at a low concentration in drinking water, the innovations of As removal from contaminated water are of significant importance. Traditional strategies, for example, reverse osmosis, ion exchange, and electro-dialysis are generally utilized for the remediation of As-polluted water; however, the high cost and/or sludge production restricts their application in less-developed areas. The utilization of adsorbents acquired from natural materials has been explored as an alternative for the costly techniques for As removal. This paper aims to review the past and current developments in using naturals adsorbents or modified natural materials for arsenic removal and show the different parameters, which may influence the As removal effectiveness of the natural adsorbent, such as contact time, adsorbent dosage, flow rate, pH, reusability, temperature, and influence of others ions.


2017 ◽  
Vol 15 (1) ◽  
Author(s):  
Lestari Dwi Utami ◽  
Narwati . ◽  
Umi Rahayu

ABSTRACTResearch on reduction of Nickel (Ni) heavy metal in wastewater by using a water plant lettuce (Pistiastratiotes L.) was conducted with the aim of knowing the level of Ni reduction in wastewater after the plants aregiven water plant lettuce (Pistia stratiotes L.). The technique used in processing wastewater of the metal platingis phytoremediation.This study was pure experiment with pretest-posttest design with control group used completerandomized design (CRD). This study was conducted in December to June, 2016.The results showed that the level of Ni in wastewater decreased after 1 day, 3 day and 6 day treatmentwith water plant lettuce. From the statistical test result, the reduction of Ni was significant with 5 plants by p =0.023 < α. Based on the contact time duration, the result of statistical test was p = 0.000 < α. The more thenumber of plants used, the greater the reduction of Nickel level. The longer the contact time of the water plantwith wastewater, the greater the reduction of Nickel level in wastewater.For further study, it is suggested to use plant that is hyper tolerant against contaminants and usedmore plants to proceed wastewater and more comparable with the level of Ni metal contained in wastewatermetal plating.Keywords : Nickel level reduction, water plant lettuce (Pistia stratiotes L.),contact duration, phytoremediation.


2019 ◽  
Vol 233 (10) ◽  
pp. 1377-1409 ◽  
Author(s):  
Sadia Ata ◽  
Anila Tabassum ◽  
Ismat Bibi ◽  
Farzana Majid ◽  
Misbah Sultan ◽  
...  

Abstract The nanoparticles have been prepared and employed as excellent adsorbents for the sequestration of heavy metal ions and hazardous impurities from the aqueous media. The surface morphological, textural and structural properties of nanoparticles have been modified, which are capable and potentially useful for the remediation of metal ions. Several metals (oxides, doped, nanocomposites of Fe, Ti, Zn, SiO2, SiC, Mo, Co, Ni, Zr, Mn, Si, S, Al, Cu, Ce, graphene, CNTs) were reported an efficient adsorbents for the removal of lead (Pb) ions from aqueous media and polluted water. The present review focuses on different kinds of nanoparticles such as metal oxides, carbon based and host supported employed for removal of Pb ions under varying experimental conditions such as pH, temperature, contact time and concentrations. The preparation strategies, physicochemical properties and adsorption are also discussed. Based on studies, it was found that the smart materials are affective adsorbents for the purification of wastewater containing Pb ions and could possibly extended for the remediation of other heavy metal ions.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1512
Author(s):  
Irma Siaurusevičiūtė ◽  
Ramunė Albrektienė

Many countries are confronted with a striking problem of morbidity of fluorosis that appears because of an increased concentration of fluorides in drinking water. The objective of this study is to explore opportunities for removal of fluoride from aqueous solutions using cheap and easily accessible adsorbents, such as exhaustive coffee grounds and iron sludge and to establish the efficiency of fluoride removal. Twelve doses (1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 50 and 60 g/L) of adsorbents were used and five durations of the sorption process (30, 60, 90, 120 and 150 min). The results showed that the most optimum dose of iron sludge for 3 mg/L of fluoride removal was 30 g/L and the contact time was 30 min, the efficiency of fluoride removal achieved 62.92%; the most optimum dose of exhausted coffee grounds was 60 g/L with the most optimum contact time of 60 min; at a dose of 50 g/L with contact time of 90 min, the efficiency of fluoride removal achieved 56.67%. Findings demonstrate that adsorbents have potential applicability in fluoride removal up to the permissible norms.


2016 ◽  
Vol 75 (2) ◽  
Author(s):  
Irma KRESNAWATY ◽  
. TRI-PANJI

SummaryHeavy metal in waste water potentiallycauses environmental pollution. Generally,heavy metal pollutions come from metalplating, textile, latex-rubber goods, and otherindustries. The process of latex-rubber goodindustries uses heavy metal in the form ofZnO as accelerator for rubber vulcanizationprocess, so that Zn 2+ ion exists in wastewatereffluents in concentration as much as 300 ppm,whereas the maximum limit allowed is 2.5 ppm.The chemical way generally used to decreaseZn 2+ concentration in wastewater effluents isby adding bases, NaOH or Ca(OH) 2 until pHreached 11, hence this metal is precipitated asits hydroxide. However, the way is done, isvery high cost and has a risk of the emergencesecondary pollution caused by excess base. Analternative way to absorb Zn 2+ consideredinexpensive is by using biosorbent in the formof Saccharomyces cerevisiae biomass frombioethanol industrial waste. The research wasconducted using artificial wastewater withZn 2+ ion concentration of 300 ppm and the pHwas adjusted to the range between 3-7.Biosorption was conducted by addition of freeS. cerevisiae biomass as well as byimmobilized cells on filter paper. Observationwas carried out for Zn 2+ concentration aftercontact time of two and five hours. The resultsof the research indicated that free andimmobilized S. cerevisiae biomass couldabsorb Zn 2+ metal and decreased itsconcentration from 250-300 ppm to 20-50 ppm.The optimum contact time was reached at onehour, while optimum sorption process occurredat pH 5. At low concentration, less than20 ppm S. cerevisiae biomass absorbed lessZn 2+ The NaOH-treated biomass showed bettersorption capabilities compared to cells treatedby formaldehyde or heat treatments. Thecontinue experiment showed the high capacityof biomass treated with NaOH to absorb Zn 2+ ,until concentration 24,02- 47,95 ppm in thefirst sampling and 1,15-10,99 ppm in thesecond sampling. Combination adsorptionprocess using charcoal and zeolite couldadsorp remain concentration of Zn 2+ , so thatcould reached the limit concentration-allowed.RingkasanLogam berat di dalam air limbahmerupakan penyebab pencemaran lingkunganyang potensial. Pencemaran logam berat padaumumnya berasal dari industri penyepuhanlogam, tekstil, barang jadi lateks, serta industrilain. Pada proses industri barang jadi lateksdigunakan logam berat dalam bentuk ZnOsebagai akselerator proses vulkanisasi karet,sehingga ion Zn 2+ terbawa dalam air limbahindustri barang jadi dengan konsentrasimencapai 300 ppm, sedangkan ambang bataskonsentrasi yang diperbolehkan maksimaladalah 2,5 ppm. Cara kimia yang umum di-gunakan untuk menurunkan kandunganZn 2+ dalam air limbah adalah dengan caramenambahkan basa, umumnya NaOH atauCa(OH) 2 , sampai pH sekitar 11, sehinggalogam berat ini diendapkan sebagai hidroksida-nya. Namun demikian, cara ini sangat mahaldan beresiko munculnya pencemaran sekunderakibat kelebihan basa. Salah satu alternatifyang murah untuk penyerapan Zn 2+ adalahmenggunakan biosorben berupa biomassaSaccharomyces cerevisiae yang berasal darilimbah pabrik bioetanol.Penelitian dilakukan dengan mengguna-kan air limbah artifisial yang mengandung ionZn 2+ dengan konsentrasi 300 ppm. Limbahartifisial diatur pHnya antara 3-7. Biosorpsidilakukan dengan menambahkan biomassaS. cerevisiae bebas maupun yang diamobilisasidengan kertas saring. Pengamatan dilakukanterhadap kandungan Zn 2+ setelah waktu kontakdua dan lima jam. Hasil penelitian menunjuk-kan bahwa biomassa S. cerevisiae bebasmaupun amobil mampu menyerap logam Zn 2+dan menurunkan konsentrasinya dari 250-300 ppm menjadi 20-50 ppm. Waktu kontakoptimum dicapai setelah satu jam, sedangkanproses sorpsi optimum terjadi pada pH 5.Biomassa S. cerevisiae kurang efektifmenyerap logam Zn 2+ pada konsentrasi rendah,di bawah 20 ppm. Perlakuan biomassa meng-gunakan NaOH menunjukkan kemampuanpenyerapan yang lebih baik jika dibandingkandengan yang diperlakukan menggunakanformaldehida dan pemanasan. Percobaan padaaliran kontinyu yang menggunakan biomassayang diperlaukan menggunakan NaOH,menunjukkan bahwa limbah artifisial Zn 2+dapat diturunkan sampai konsentrasi 24,02-47,95 ppm pada sampling pertama, dan 1,15-10,99 ppm pada sampling kedua. Kombinasipenyerapan menggunakan arang aktif danzeolit dapat menyerap sisa Zn 2+ mencapai batasyang diperbolehkan.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (&gt;0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 209-216
Author(s):  
R. Sublet ◽  
A. Boireau ◽  
V.X. Yang ◽  
M.-O. Simonnot ◽  
C. Autugelle

Two lead removal water filters were developed to lower lead levels in drinking water below 10 μg.L-1 in order to meet the new regulation given by the European Directive 98-83, applicable in December 2013. An appropriate adsorbent was selected through a stringent research program among a wide range of media, and is composed of a synthetic zeolite and an activated carbon. Two prototypes were developed: the first is a faucet-mounted filter which contains a fixed bed of the adsorbent and a hollow fiber bundle, while the second is an under-sink cartridge made of a porous extruded block of carbon and adsorbent. Both are able to treat at least 1,000 litres of any water containing on average 100 to 150 μg Pb.L-1, by lowering the lead concentration below 10 μg.L-1. Once their safety considerations were addressed by an independent laboratory according to the French Ministry of Health recommendations, 20 prototypes were installed at consumers' taps in northeastern France. Their performance in terms of lead removal, HPC control and bad taste and odor reduction was followed for 6 months. This field testing program resulted in the validation of both prototypes which meet the new French Ministry of Health recommendations and assures that the filtered water is fully ED 98-83 compliant. Their commercialization will be launched first in France in middle 2002.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1086
Author(s):  
Asma Abdulkareem ◽  
Anton Popelka ◽  
Patrik Sobolčiak ◽  
Aisha Tanvir ◽  
Mabrouk Ouederni ◽  
...  

This paper addresses the preparation and characterization of efficient adsorbents for tertiary treatment (oil content below 100 ppm) of oil/water emulsions. Powdered low-density polyethylene (LDPE) was modified by radio-frequency plasma discharge and then used as a medium for the treatment of emulsified diesel oil/water mixtures in the concentration range from 75 ppm to 200 ppm. Plasma treatment significantly increased the wettability of the LDPE powder, which resulted in enhanced sorption capability of the oil component from emulsions in comparison to untreated powder. Emulsions formed from distilled water and commercial diesel oil (DO) with concentrations below 200 ppm were used as a model of oily polluted water. The emulsions were prepared using ultrasonication without surfactant. The droplet size was directly proportional to sonication time and ranged from 135 nm to 185 nm. A sonication time of 20 min was found to be sufficient to prepare stable emulsions with an average droplet size of approximately 150 nm. The sorption tests were realized in a batch system. The effect of contact time and initial oil concentrations were studied under standard atmospheric conditions at a stirring speed of 340 rpm with an adsorbent particle size of 500 microns. The efficiency of the plasma-treated LDPE powder in oil removal was found to be dependent on the initial oil concentration. It decreased from 96.7% to 79.5% as the initial oil concentration increased from 75 ppm to 200 ppm. The amount of adsorbed oil increased with increasing contact time. The fastest adsorption was observed during the first 30 min of treatment. The adsorption kinetics for emulsified oils onto sorbent followed a pseudo-second-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document