scholarly journals The chevkinite group: underestimated accessory phases from a wide range of parageneses

Mineralogia ◽  
2013 ◽  
Vol 44 (3-4) ◽  
pp. 99-114 ◽  
Author(s):  
Bogusław Bagiński ◽  
Ray Macdonald

AbstractChevkinite-group minerals are widespread in a very wide range of igneous and metamorphic parageneses, forming important components of accessory mineral assemblages. Their presence in a rock may be difficult to establish by standard optical techniques, which has contributed to their importance being underestimated; a combination of SEM and EMPA is recommended here. Currently, there are eleven IMAapproved members of the group but undoubtedly several more will be described in the near future. There is considerable compositional variation in the group, which can be expressed as: REE + M2+C + M3+C = Ca2+ A + Sr + Ti4+C + Zr4+C where A and C are structural sites. Chevkinite-group minerals strongly fractionate geochemically coherent pairs, such as LREE-HREE, Nb-Ta, Zr-Hf and Th-U, and thus play a critical role in geochemical modelling.

2021 ◽  
Author(s):  
Akira Takagi ◽  
Masanori Matsui

COVID-19 vaccines are currently being administrated worldwide and playing a critical role in controlling the pandemic. They have been designed to elicit neutralizing antibodies against Spike protein of the original SARS-CoV-2, and hence they are less effective against SARS-CoV-2 variants with mutated Spike than the original virus. It is possible that novel variants with abilities of enhanced transmissibility and/or immunoevasion will appear in the near future and perfectly escape from vaccine-elicited immunity. Therefore, the current vaccines may need to be improved to compensate for the viral evolution. For this purpose, it may be beneficial to take advantage of CD8+ cytotoxic T lymphocytes (CTLs). Several lines of evidence suggest the contribution of CTLs on the viral control in COVID-19, and CTLs target a wide range of proteins involving comparatively conserved non-structural proteins. Here, we identified twenty-two HLA-A*24:02-restricted CTL candidate epitopes derived from the non-structural polyprotein 1a (pp1a) of SARS-CoV-2 using computational algorithms, HLA-A*24:02 transgenic mice and the peptide-encapsulated liposomes. We focused on pp1a and HLA-A*24:02 because pp1a is relatively conserved and HLA-A*24:02 is predominant in East Asians such as Japanese. The conservation analysis revealed that the amino acid sequences of 7 out of the 22 epitopes were hardly affected by a number of mutations in the Sequence Read Archive database of SARS-CoV-2 variants. The information of such conserved epitopes might be useful for designing the next-generation COVID-19 vaccine that is universally effective against any SARS-CoV-2 variants by the induction of both anti-Spike neutralizing antibodies and CTLs specific for conserved epitopes.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


Author(s):  
Vijaya Ramadas Mandala

The main contention of Shooting a Tiger is that hunting during the colonial period was not merely a recreational activity, but a practice intimately connected with imperial governance. The book positions shikar or hunting at the heart of colonial rule by demonstrating that, for the British in India, it served as a political, practical, and symbolic apparatus in the consolidation of power and rule during the nineteenth and early twentieth centuries. The book analyses early colonial hunting during the Company period, and then surveys different aspects of hunting during the high imperial decades in the later nineteenth and early twentieth centuries. The book draws upon an impressive array of archival material and uses a wide range of evidence to support its contentions. It examines hunting at a variety of social and ethnic levels—military, administrative, elite, princely India, Indian professional hunters, and in terms of Indian auxiliaries and (sometimes) resisters. It also deals with different geographical contexts—the plains, the mountains, north and south India. The exclusive privilege of hunting exercised by the ruling classes, following colonial forest legislation, continued to be extended to the Indian princes who played a critical role in sustaining the lavish hunts that became the hallmark of the late nineteenth-century British Raj. Hunting was also a way of life in colonial India, undertaken by officials and soldiers alike alongside their everyday duties, necessary for their mental sustenance and vital for the smooth operation of the colonial administration. There are also two final chapters on conservation, particularly the last chapter focusing on two British hunter-turned-conservationists, Jim Corbett and Colonel Richard Burton.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 347
Author(s):  
Carsten Laukamp ◽  
Andrew Rodger ◽  
Monica LeGras ◽  
Heta Lampinen ◽  
Ian C. Lau ◽  
...  

Reflectance spectroscopy allows cost-effective and rapid mineral characterisation, addressing mineral exploration and mining challenges. Shortwave (SWIR), mid (MIR) and thermal (TIR) infrared reflectance spectra are collected in a wide range of environments and scales, with instrumentation ranging from spaceborne, airborne, field and drill core sensors to IR microscopy. However, interpretation of reflectance spectra is, due to the abundance of potential vibrational modes in mineral assemblages, non-trivial and requires a thorough understanding of the potential factors contributing to the reflectance spectra. In order to close the gap between understanding mineral-diagnostic absorption features and efficient interpretation of reflectance spectra, an up-to-date overview of major vibrational modes of rock-forming minerals in the SWIR, MIR and TIR is provided. A series of scripts are proposed that allow the extraction of the relative intensity or wavelength position of single absorption and other mineral-diagnostic features. Binary discrimination diagrams can assist in rapidly evaluating mineral assemblages, and relative abundance and chemical composition of key vector minerals, in hydrothermal ore deposits. The aim of this contribution is to make geologically relevant information more easily extractable from reflectance spectra, enabling the mineral resources and geoscience communities to realise the full potential of hyperspectral sensing technologies.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3143
Author(s):  
Sergey E. Parfenyev ◽  
Sergey V. Shabelnikov ◽  
Danila Y. Pozdnyakov ◽  
Olga O. Gnedina ◽  
Leonid S. Adonin ◽  
...  

Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.


2019 ◽  
Vol 122 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Adrian L. Harris

AbstractCancer metabolism has undergone a resurgence in the last decade, 70 years after Warburg described aerobic glycolysis as a feature of cancer cells. A wide range of techniques have elucidated the complexity and heterogeneity in preclinical models and clinical studies. What emerges are the large differences between tissues, tumour types and intratumour heterogeneity. However, synergies with inhibition of metabolic pathways have been found for many drugs and therapeutic approaches, and a critical role of window studies and translational trial design is key to success.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rebecca Callaby ◽  
Emma Hurst ◽  
Ian Handel ◽  
Phil Toye ◽  
Barend M. de C. Bronsvoort ◽  
...  

AbstractVitamin D plays a critical role in calcium homeostasis and in the maintenance and development of skeletal health. Vitamin D status has increasingly been linked to non-skeletal health outcomes such as all-cause mortality, infectious diseases and reproductive outcomes in both humans and veterinary species. We have previously demonstrated a relationship between vitamin D status, assessed by the measurement of serum concentrations of the major vitamin D metabolite 25 hydroxyvitamin D (25(OH)D), and a wide range of non-skeletal health outcomes in companion and wild animals. The aims of this study were to define the host and environmental factors associated with vitamin D status in a cohort of 527 calves from Western Kenya which were part of the Infectious Disease of East African Livestock (IDEAL) cohort. A secondary aim was to explore the relationship between serum 25(OH)D concentrations measured in 7-day old calves and subsequent health outcomes over the following 12 months. A genome wide association study demonstrated that both dietary and endogenously produced vitamin D metabolites were under polygenic control in African calves. In addition, we found that neonatal vitamin D status was not predictive of the subsequent development of an infectious disease event or mortality over the 12 month follow up period.


2015 ◽  
Vol 30 (28) ◽  
pp. 1550139
Author(s):  
Keji Shen ◽  
Qiang Zhang ◽  
Xin-He Meng

Counting galaxy number density with wide range sky surveys has been well adopted in researches focusing on revealing evolution pattern of different types of galaxies. As understood intuitively the astrophysics environment physics is intimately affected by cosmology priors with theoretical estimation or vice versa, or simply stating that the astrophysics effect couples the corresponding cosmology observations or the way backwards. In this paper, we try to quantify the influence on galaxy number density prediction at faint luminosity limit from the uncertainties in cosmology, and how much the uncertainties blur the detection of galaxy evolution, with the hope that this trying may indeed help for precise and physical cosmology study in near future or vice versa.


2012 ◽  
Vol 18 (2) ◽  
pp. 81 ◽  
Author(s):  
Daniel Lunney

How people coexist and interact with animals has become an intensely debated issue in recent times, particularly with the rise of the animal protection movement following the publication of Peter Singer’s book Animal Liberation in 1975. This paper discusses some shortcomings of the philosophical positions taken in this complex debate. Singer has helped put animals on a new footing as a group that cannot morally be ignored, but his focus is mainly on individual, familiar animals that are used or abused by humans. The argument of this paper is that the ethics of managing wildlife hinges on a broader view of animals, and their contexts, than is apparent from Singer’s text. Wildlife managers aim to conserve populations of a wide range of species, and their habitats, but some mechanisms for achieving these aims, such as research and the control of invasive animals, are frequently opposed by elements of the animal protection movement. We need to adapt our attitude to animals, particularly wildlife, away from the traditional legacy of a few familiar species to embrace an ethic that is more ecological and relevant to Australian contexts. The case argued here has been to see the critical role of context — geographical, ecological, historical, relational — as a basis for a degree of reconciliation between conservation-oriented wildlife managers and the rising interest in the ethics of animal use. There is much to be gained for zoologists, wildlife managers and conservation biologists by framing key elements of their case in ethical arguments. Conversely, the challenge for those in the animal protection movement is to expand their philosophical ideas to include the ethical imperative of the conservation of populations of wildlife.


Sign in / Sign up

Export Citation Format

Share Document