scholarly journals Numerical Validation of Drilling of Al6061-T6 with Experimental Data

2019 ◽  
Vol 23 (1) ◽  
pp. 287-290 ◽  
Author(s):  
Prashant Elango ◽  
K. Prakash Marimuthu

Abstract Drilling is a cutting process that uses a drill bit to cut a circular profile in workpiece. Forces acting on the drill bit reduce its life expectance. Analysis of forces acting on the drill bit during drilling prevents the tool from failing prematurely because of wear and excess feed rate. Excess feed rate can induce excessive internal stress on both the tool and workpiece. This paper aims to study the effects of reaction force acting on a drill bit during drilling of Al6061-T6. A numerical finite element simulation study is performed with commercially available software called Abaqus. Simulation results depend on the right choice of material property such as Johnson–Cook material property and Johnson–Cook damage property. Validation of material property is achieved by comparison of experimental results with simulative results. Reaction force acting against the drill bit during drilling is compared.

2011 ◽  
Vol 121-126 ◽  
pp. 2304-2307
Author(s):  
Tie Jun Wu ◽  
Hong Jun Wang

The residual stress distribution of fillet of the diesel engine crankshaft on laser shock processing was analyzed by ANSYS software. The simulation results compared with the experimental data, to get results as follows: the simulation results were basically consistent with the experimental data. This fully proved that the finite element simulation method and related simulation parameters were correct. The parameters of laser impacting were optimized by ANSYS simulation, and the residual stress favorable distribution of the crankshaft fillet was obtained.


1999 ◽  
Author(s):  
G. E. Lawrence ◽  
A. Saigal ◽  
M. A. Zimmerman ◽  
R. Greif ◽  
Y. Duan

Abstract The analysis of multiaxial impact of polymer disks is considered. The calculation of impact displacements and stresses is provided. Finite element simulation results are compared to experimental data. The results from simulations of various impact velocity and mass are given for a constant disk thickness. Results from simulations of various disk thickness for constant impact mass and velocity are shown as well. The plasticity failure model used in FEA simulation of impact is quantified for the application with the tested polymers. It is shown that strain rate material dependence is an important factor in accurately modeling impact response of polymers.


Author(s):  
Aleksey Malahanov

A variant of the implementation of the behavioral model of a linear voltage stabilizer in the Spice language is presented. The results of modeling in static mode are presented. The simulation results are compared with experimental data and technical description of the chip manufacturer.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Eun Kim ◽  
Jangyun Lee ◽  
Sae Yong Lee ◽  
Hae-Dong Lee ◽  
Jae Kun Shim ◽  
...  

AbstractThe purpose of this study was to investigate how the ball position along the mediolateral (M-L) direction of a golfer causes a chain effect in the ground reaction force, body segment and joint angles, and whole-body centre of mass during the golf swing. Twenty professional golfers were asked to complete five straight shots for each 5 different ball positions along M-L: 4.27 cm (ball diameter), 2.14 cm (ball radius), 0 cm (reference position at preferred ball position), – 2.14 cm, and – 4.27 cm, while their ground reaction force and body segment motions were captured. The dependant variables were calculated at 14 swing events from address to impact, and the differences between the ball positions were evaluated using Statistical Parametric Mapping. The left-sided ball positions at address showed a greater weight distribution on the left foot with a more open shoulder angle compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. These trends disappeared during the backswing and reappeared during the downswing. The whole-body centre of mass was also located towards the target for the left-sided ball positions throughout the golf swing compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. We have concluded that initial ball position at address can cause a series of chain effects throughout the golf swing.


Author(s):  
Riccardo Caponetto ◽  
Salvatore Graziani ◽  
Emanuele Murgano

AbstractIn the paper, a fractional-order RLC circuit is presented. The circuit is realized by using a fractional-order capacitor. This is realized by using carbon black dispersed in a polymeric matrix. Simulation results are compared with the experimental data, confirming the suitability of applying this new device in the circuital implementation of fractional-order systems.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document