scholarly journals Effect of Surface Finish Reflectance on Energy Consumed by Lighting

2021 ◽  
Vol 25 (1) ◽  
pp. 907-916
Author(s):  
Ammar Alkhalidi ◽  
Shahd Shammout ◽  
Mohamad K. Khawaja

Abstract Efforts from both spatial and energy engineers were conceived in order to reduce the total running costs of electric consumption in buildings. An often-overlooked energy and money saving opportunity for the built environment lies in lighting. This study investigates the effect of room interior finish on electrical lighting energy consumption. Walls, ceiling, and floor finish, in accordance to light reflectance values, were taken at low reflectance model (LRM), medium reflectance model (MRM), and high reflectance model (HRM). Various occupied spaces were classified in accordance to physical dimensions and capacity in order to cover a wide range of space usage and standard illuminance requirements. It was found that the HRM reduced power consumption in lighting by about 40.62 % compared to the LRM in the case for medium museum halls, with energy saved rating at about 2.32 GWh annually; other occupied spaces show a saving potential between 22.00 % and 40.00 %.

2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


1977 ◽  
Vol 12 (1) ◽  
pp. 29-36 ◽  
Author(s):  
H Fessler ◽  
D A Perry

Standard flanges for five widely differing pressure ratings, having a wide range of different joint surface profiles, were sealed by flat rubber or asbestos gaskets. Different initial bolt tensions were applied and the variation of clamping force with internal pressure was measured up to leakage of the joint. The joint efficiency, defined as: (end thrust due to leakage pressure on bore area of pipe)/(total initial bolting force), is not affected by variations in joint-face surface finish if machining grooves across the joint surface are avoided. Minimum values of joint efficiency are given. The effects of gasket material, width and thickness and number of bolts on joint efficiency are considered.


Author(s):  
Adi Prasetio ◽  
Soyeon Kim ◽  
Muhammad Jahandar ◽  
Dong Chan Lim

AbstractIncorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and Jsc to 17.67 mA cm−2, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.


1973 ◽  
Vol 8 (12) ◽  
pp. 1788-1794 ◽  
Author(s):  
E. Chandler ◽  
Miss H. M. Lindsay ◽  
H. Li. D. Pugh ◽  
J. S. White

2021 ◽  
Vol 13 (9) ◽  
pp. 4886
Author(s):  
Katia Perini ◽  
Fabio Magrassi ◽  
Andrea Giachetta ◽  
Luca Moreschi ◽  
Michela Gallo ◽  
...  

Urban greening provides a wide range of ecosystem services to address the main challenges of urban areas, e.g., carbon sequestration, evapotranspiration and shade, thermal insulation, and pollution control. This study evaluates the environmental sustainability of a vertical greening system (VGS) built in 2014 in Italy, for which extensive monitoring activities were implemented. The life-cycle assessment methodology was applied to quantify the water–energy–climate nexus of the VGS for 1 m2 of the building’s wall surface. Six different scenarios were modelled according to three different end-of-life scenarios and two different useful lifetime scenarios (10 and 25 years). The environmental impact of global-warming potential and generated energy consumption during the use phase in the VGS scenarios were reduced by 56% in relation to the baseline scenario (wall without VGS), and showed improved environmental performance throughout the complete life cycle. However, the water-scarcity index (WSI) of the VGS scenarios increased by 42%. This study confirms that the installation of VGSs offers a relevant environmental benefit in terms of greenhouse-gas emissions and energy consumption; however, increased water consumption in the use phase may limit the large-scale application of VGSs.


2021 ◽  
Vol 3 (44) ◽  
pp. 111-115
Author(s):  
Tat’yana R. Gallyamova ◽  

When developing modern lighting technologies for objects of the agro-industrial complex, the problem arises of assessing the contribution of reflected light to the normalized illumination. The reflective properties of the surfaces of materials are characterized by a reflection coefficient ρ, which reaches a value of 0.7. This allows us to consider the reflective surfaces as an additional light source and the possibility of reducing energy consumption costs. (Research purpose) The research purpose is in developing a mathematical model that allows us to estimate the spectral reflection coefficient ρ(λ) of materials of construction technologies of the agro-industrial complex in the ultraviolet and visible spectral regions. (Materials and methods) That the disadvantage of various models is the lack of an analytical method for calculating the reflection coefficient in a wide range of wavelengths. We used a probabilistic method to overcome this disadvantage. (Results and discussion) The developed mathematical model makes it possible to estimate the reflection coefficient of the rough surface of materials in a wide range of the spectrum. For concrete, the area of agreement between theory and experiment is in the wavelength range from 250 to 1000 nm. The saturation mode predicted by the theory (the independence of the reflection coefficient from the wavelength) at a reflection coefficient of 0.4 is consistent with the experimental values in the visible range of the spectrum for construction materials of the agro-industrial complex, in particular, gray textured concrete, gray facade paint, light wood, gray silicate brick, new plaster without whitewash. (Conclusions) In the case of normal light incidence, the developed mathematical model allows us to theoretically estimate the reflection coefficient of the rough surfaces of construction technologies of the agro-industrial complex. The proposed model can be used in the development and design of a system of technological lighting of large-area premises (for example, when keeping birds on the floor), as well as for developing recommendations for reducing the energy consumption of existing lighting systems.


2012 ◽  
Vol 49 (No. 1) ◽  
pp. 7-11 ◽  
Author(s):  
J. Souček ◽  
I. Hanzlíková ◽  
P. Hutla

In case of pressed composite biofuels production the important part of the production process is the input row materials disintegration. In dependence on disintegrated material properties, disintegration device, grinding stage and technological process there is in practice necessary for disintegration of culm materials 0.5–7% and of wooden species even 0.75–10% of total energetical content of material. A wide range of these figures means that in this sphere of raw materials adaptation can be reached relative high savings through correct choice of technological process and device. The authors of the paper have measured energy consumption of fine disintegration of lignocellulose materials in dependence on particles size and moisture. By the realized measurement of different average size of both input and output particles and consequent statistical evaluation was proved the fiducial energy consumption increase at higher stage of disintegration and higher moisture of the input material. All measurements were carried-out for the grinding mill ŠK 300 and the output particles size was limited by the exchange sieves mesh dimension.


Sign in / Sign up

Export Citation Format

Share Document