scholarly journals Assessment of Susceptibility to Liquefaction of Saturated Road Embankment Subjected to Dynamic Loads

2014 ◽  
Vol 36 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Anna Borowiec ◽  
Krzysztof Maciejewski

Abstract Liquefaction has always been intensely studied in parts of the world where earthquakes occur. However, the seismic activity is not the only possible cause of this phenomenon. It may in fact be triggered by some human activities, such as constructing and mining or by rail and road transport. In the paper a road embankment built across a shallow water reservoir is analyzed in terms of susceptibility to liquefaction. Two types of dynamic loadings are considered: first corresponding to an operation of a vibratory roller and second to an earthquake. In order to evaluate a susceptibility of soil to liquefaction, a factor of safety against triggering of liquefaction is used (FSTriggering). It is defined as a ratio of vertical effective stresses to the shear stresses both varying with time. For the structure considered both stresses are obtained using finite element method program, here Plaxis 2D. The plastic behavior of the cohesionless soils is modeled by means of Hardening Soil (HS) constitutive relationship, implemented in Plaxis software. As the stress tensor varies with time during dynamic excitation, the FSTriggering has to be calculated for some particular moment of time when liquefaction is most likely to occur. For the purposes of this paper it is named a critical time and established for reference point at which the pore pressures were traced in time. As a result a factor of safety distribution throughout embankment is generated. For the modeled structure, cyclic point loads (i.e., vibrating roller) present higher risk than earthquake of magnitude 5.4. Explanation why considered structure is less susceptible to earthquake than typical dam could lay in stabilizing and damping influence of water, acting here on both sides of the slope. Analogical procedure is applied to assess liquefaction susceptibility of the road embankment considered but under earthquake excitation. Only the higher water table is considered as it is the most unfavorable. Additionally the modified factor of safety is introduced, where the dynamic shear stress component is obtained at a time step when its magnitude is the highest - not necessarily at the same time step when the pore pressure reaches its peak (i.e., critical time). This procedure provides a greater margin of safety as the computed factors of safety are smaller. Method introduced in the paper presents a clear and easy way to locate liquefied zones and estimate liquefaction susceptibility of the subsoil - not only in the road embankment.

2000 ◽  
Author(s):  
Ala Tabiei ◽  
Romil Tanov ◽  
Victor Birman

Abstract This work presents the finite element (FE) formulation and implementation of a higher order shear deformable shell element for dynamic explicit analysis of composite and sandwich shells. The formulation is developed using a displacement based third order shear deformation shell theory. Using the differential equilibrium equations and the interlayer requirements, a treatment is developed for the transverse shear, resulting in a continuous, piecewise quartic distribution of the transverse shear stresses through the shell thickness. The FE implementation is cast into a 4-noded quadrilateral shell element with 9 degrees of freedom (DOF) per node. Only C0 continuity of the displacement functions is required in the shell plane, which makes the present formulation applicable to the most common 4-noded bilinear isoparametric shell elements. Expressions are developed for the critical time step of the explicit time integration for orthotropic homogeneous and layered shells based on the developed third order formulation. To assess the performance of the present shell element it is implemented in the general nonlinear explicit dynamic FE code DYNA3D. Several problems are solved and results are compared to other theoretical and numerical results. The developed sandwich shell element is much more computationally efficient for modeling sandwich shells than solid elements.


2021 ◽  
Author(s):  
Chennakesava Kadapa

AbstractThis paper presents a novel semi-implicit scheme for elastodynamics and wave propagation problems in nearly and truly incompressible material models. The proposed methodology is based on the efficient computation of the Schur complement for the mixed displacement-pressure formulation using a lumped mass matrix for the displacement field. By treating the deviatoric stress explicitly and the pressure field implicitly, the critical time step is made to be limited by shear wave speed rather than the bulk wave speed. The convergence of the proposed scheme is demonstrated by computing error norms for the recently proposed LBB-stable BT2/BT1 element. Using the numerical examples modelled with nearly and truly incompressible Neo-Hookean and Ogden material models, it is demonstrated that the proposed semi-implicit scheme yields significant computational benefits over the fully explicit and the fully implicit schemes for finite strain elastodynamics simulations involving incompressible materials. Finally, the applicability of the proposed scheme for wave propagation problems in nearly and truly incompressible material models is illustrated.


2018 ◽  
Vol 55 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Shiguo Xiao ◽  
Wei Dong Guo ◽  
Jinxiu Zeng

The factor of safety of a slope (Fs) is invariably assessed using methods underpinned by moment, force, and (or) shear strength equilibrium concerning slip surfaces. Each method inherently embeds some form of limitations, despite being popularly adopted in practice. In this paper, a new Fs is devised using the ratio of ultimate energy (eu, upon sliding) over accumulated “elastic” energy. The Fs is then reduced to a simple expression of the power to shear stress and shear strength, by taking soil as an elastic–plastic material obeying the Mohr–Coulomb failure criterion. This expression empowers significant efficacy in gaining the factor of safety (without involving energy or directions of shear stresses). The Fs values were calculated for three typical slopes concerning various mechanical properties (dilation, Poisson’s ratio, and shear modulus) and effective computational strategies. All of the Fs values (to a congruous accuracy of available methods) were obtained in less than 1% the time of conventional numerical analyses. The proposed Fs, equally applicable to limit equilibrium methods, may be utilized in practice to expedite slope design.


Author(s):  
Phani Ganesh Elapolu ◽  
Pradip Majumdar ◽  
Steven A. Lottes ◽  
Milivoje Kostic

One of the major concerns affecting the safety of bridges with foundation supports in river-beds is the scouring of river-bed material from bridge supports during floods. Scour is the engineering term for the erosion caused by water around bridge elements such as piers, monopiles, or abutments. Scour holes around a monopile can jeopardize the stability of the whole structure and will require deeper piling or local armoring of the river-bed. About 500,000 bridges in the National Bridge Registry are over waterways. Many of these are considered as vulnerable to scour, about five percent are classified as scour critical, and over the last 30 years bridge failures caused by foundation scour have averaged about one every two weeks. Therefore it is of great importance to predict the correct scour development for a given bridge and flood conditions. Apart from saving time and money, integrity of bridges are important in ensuring public safety. Recent advances in computing boundary motion in combination with mesh morphing to maintain mesh quality in computational fluid dynamic analysis can be applied to predict the scour hole development, analyze the local scour phenomenon, and predict the scour hole shape and size around a pier. The main objective of the present study was to develop and implement a three dimensional iterative procedure to predict the scour hole formation around a cylindrical pier using the mesh morphing capabilities in the STARCCM+ commercial CFD code. A computational methodology has been developed using Python and Java Macros and implemented using a Bash script on a LINUX high performance computer cluster. An implicit unsteady approach was used to obtain the bed shear stresses. The mesh was iteratively deformed towards the equilibrium scour position based on the excess shear stress above the critical shear stress (supercritical shear stress). The model solves the flow field using Reynolds Averaged Navier-Stokes (RANS) equations, and the standard k–ε turbulence model. The iterative process involves stretching (morphing) a meshed domain after every time step, away from the bottom where scouring flow parameters are supercritical, and remeshing the relevant computational domain after a certain number of time steps when the morphed mesh compromises the stability of further simulation. The simulation model was validated by comparing results with limited experimental data available in the literature.


2019 ◽  
Vol 10 (1) ◽  
pp. 250 ◽  
Author(s):  
Andrzej Gruchot ◽  
Tymoteusz Zydroń

The paper presents the results of research on the influence of compaction on the shear strength of fly ash, unburnt and burnt coal wastes, and a composite (a mixture of unburnt coal waste and 30% of fly ash). The tests were carried out in a triaxial compression apparatus on samples with a diameter and height of 10 and 20 cm, respectively. In order to verify usability of the tested waste materials for earthworks, stability calculations of the road embankment made of these materials were carried out. It was shown that the tested materials were characterized by high values of shear strength parameters, which significantly depended on compaction. The most favorable values of the angle of internal friction and cohesion were obtained for the burnt coal waste, slightly lower for the composite, and the lowest for the fly ash. Stability calculations for the road embankment model showed that the slope inclination and the load on the embankment have a significant influence on the factor of safety. It was also shown that a decrease in cohesion causes significant decrease in the factor of safety. The tests and the stability calculations showed that the tested waste materials are useful for earth construction purposes.


2004 ◽  
Vol 31 (5) ◽  
pp. 749-758 ◽  
Author(s):  
David H Willis ◽  
B G Krishnappan

Techniques available to practicing civil engineers for numerically modelling cohesive mud in rivers and estuaries are reviewed. Coupled models, treating water and sediment as a single process, remain research tools but are usually not three-dimensional. The decoupled approach, which separates water and sediment computations at each model time step, allows the three-dimensional representation of at least the bed and the use of well-proven, commercial, numerical, hydrodynamic models. Most hydrodynamic models compute sediment transport in suspension but may require modification of the dispersion coefficients to account for the presence of sediment. The sediment model deals with the sediment exchange between the water column and the bed using existing equations for erosion and deposition. Both equations relate the sediment exchange rates to the shear stress in the bottom boundary layer. In real rivers and estuaries, a depositional bed layer is associated with a period of low flow and shear, at slack tide for example, whereas in numerical models a layer is defined by the model time step. The sediment model keeps track of the uppermost layers at each model grid point, including consolidation and strengthening. Although numerical hydrodynamic models are based strongly on physics, sediment models are only numerical frameworks for interpolating and extrapolating full-scale field or laboratory measurements of "hydraulic sediment parameters," such as threshold shear stresses. Calibration and verification of models against measurement are therefore of prime importance.Key words: cohesive sediment, mathematical modelling, settling velocity, erosion, resuspension, deposition, fluid mud, bed layers.


1978 ◽  
Vol 45 (2) ◽  
pp. 371-374 ◽  
Author(s):  
T. J. R. Hughes ◽  
W. K. Liu

A stability analysis is carried out for a new family of implicit-explicit finite-element algorithms. The analysis shows that unconditional stability may be achieved for the implicit finite elements and that the critical time step of the explicit elements governs for the system.


1984 ◽  
Vol 1 (19) ◽  
pp. 114 ◽  
Author(s):  
W. Leeuwenstein ◽  
H.G. Wind

Obstructions located in coastal and offshore waters usually disturb the natural flow pattern. This disturbed flow will, in general, cause local morphological changes in the position of the erodable boundary. Often these changes should not be allowed to exceed certain limits, for example, when local scour around an offshore construction may endanger foundations. Local morphological changes result from changes in the local sediment balance, brought about by the flow disturbance. In the present paper a mathematical model is described which gives the bottom shear stresses and the configuration of the seabed around an obstruction using a computation of the two dimensional turbulent flow field. The obstruction considered is a submarine pipeline laid uncovered on a seabed consisting of non-cohesive sediment. A research project on the local scour near submarine pipelines is being carried out at the Delft University of Technology. Part of the project is the application and extension of an advanced numerical flow model for scour development near pipelines on the seabed exposed to current action. This work is being carried out in cooperation with the Delft Hydraulics Laboratory. The code of the flow model has been developed in a joint venture between the Delft Hydraulics Laboratory and the Laboratoire National d"Hydraulique in France. The turbulent flow field is computed taking into account the influence of turbulence generated at the bed and by the pipe. The bed shear stresses are assumed to play the key role in the interaction between the flow and the seabed. In the computer model the bed shear is related to the flow through the "law of the wall". The model operation is schematized in the diagram below in which the first loop represents the evolution of the velocity field through a series of hydraulic time steps. After the velocity field is stabilized, in the second loop one morphological time step can be used for the computation of the local seabed changes. In this second loop the computed bed shear is applied together with a sediment transport formula. After the morphological time step a new bed topography is obtained and a new grid is generated for the next flow computation.


Sign in / Sign up

Export Citation Format

Share Document