scholarly journals Shear Strength of Industrial Wastes and Their Mixtures and Stability of Embankments Made of These Materials

2019 ◽  
Vol 10 (1) ◽  
pp. 250 ◽  
Author(s):  
Andrzej Gruchot ◽  
Tymoteusz Zydroń

The paper presents the results of research on the influence of compaction on the shear strength of fly ash, unburnt and burnt coal wastes, and a composite (a mixture of unburnt coal waste and 30% of fly ash). The tests were carried out in a triaxial compression apparatus on samples with a diameter and height of 10 and 20 cm, respectively. In order to verify usability of the tested waste materials for earthworks, stability calculations of the road embankment made of these materials were carried out. It was shown that the tested materials were characterized by high values of shear strength parameters, which significantly depended on compaction. The most favorable values of the angle of internal friction and cohesion were obtained for the burnt coal waste, slightly lower for the composite, and the lowest for the fly ash. Stability calculations for the road embankment model showed that the slope inclination and the load on the embankment have a significant influence on the factor of safety. It was also shown that a decrease in cohesion causes significant decrease in the factor of safety. The tests and the stability calculations showed that the tested waste materials are useful for earth construction purposes.

2019 ◽  
Vol 12 (6) ◽  
pp. 163-169
Author(s):  
C. Rajakumar ◽  
P. Kodanda Rama Rao

The slope stability analysis is always under severe threats in many parts of nilgiris district, causing disruption, loss of human life and economy. The stability of slopes depends on the soil shear strength parameters such as Cohesion, Angle of internal friction, Unit weight of soil and Slope geometry. The stability of a slope is measured by its factor of safety using geometric and shear strength parameter based on infinite slopes. In this research, investigation was carried out at 5 locations in Kattery watershed in nilgiris district. The factor of safety of the slope determined by Mohr Coulomb theory based on shear strength parameter calculated from direct shear test which is a conventional procedure for this study. Artificial. Neural Network (ANN) Model is used to predict the factor of safety. The input parameters for the (ANN) are chosen as Cohesion, Angle of internal friction, Density and Slope angle and the factor of safety as output. The results obtained in ANN method were compared with that of conventional method and observed a good agreement between these two methods.


2019 ◽  
Vol 9 (2) ◽  
pp. 80-85
Author(s):  
Farman K. Ghaffoori ◽  
Mohamed M. Arbili

This paper deals with on stabilization of crude oil-contaminated soil. Industrial waste materials such as GGBFS and fly ash (FA) are used to achieve acceptable results for compaction and strength properties. GGBFS and FA utilized in two groups of soil (clean soil and 6% contaminated with crude oil) with varying proportions of GGBFS and FA by weight of soil. The primary goals of this study explain to establish a conclusion that GGBFS and FA are the best byproduct stabilizer material for increasing the strength and stability of soil by investigating samples of soil. In this study, the effect of GGBFS and FA on compaction properties (OMC and MDD) and direct shear strength (cohesion and angle of friction) observed. Different percentages of GGBFS (0%, 10%, and 15%) and FA (0%, 10%, and 15%) by dry weight were utilized in mixtures of sandy soil samples for different experiments. Ultimately, bases on the experimental results, it is summarized that the use of industrial wastes, i.e. GGBFS and Flyash, are affected in shear strength and compaction properties. Although, they have environment-friendly behavior for the construction project purpose.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4098
Author(s):  
Iman Faridmehr ◽  
Ghasan Fahim Huseien ◽  
Mohammad Hajmohammadian Baghban

Currently, alkali-activated binders using industrial wastes are considered an environmentally friendly alternative to ordinary Portland cement (OPC), which contributes to addressing the high levels of carbon dioxide (CO2) emissions and enlarging embodied energy (EE). Concretes produced from industrial wastes have shown promising environmentally-friendly features with appropriate strength and durability. From this perspective, the compressive strength (CS), CO2 emissions, and EE of four industrial powder waste materials, including fly ash (FA), palm oil fly ash (POFA), waste ceramic powder (WCP), and granulated blast-furnace slag (GBFS), were investigated as replacements for OPC. Forty-two engineered alkali-activated mix (AAM) designs with different percentages of the above-mentioned waste materials were experimentally investigated to evaluate the effect of each binder mass percentage on 28-day CS. Additionally, the effects of each industrial powder waste material on SiO2, CaO, and Al2O3 contents were investigated. The results confirm that adding FA to the samples caused a reduction of less than 26% in CS, whereas the replacement of GBFS by different levels of POFA significantly affected the compressive strength of specimens. The results also show that the AAM designs with a high volume FA provided the lowest EE and CO2 emission levels compared to other mix designs. Empirical equations were also proposed to estimate the CS, CO2 emissions, and EE of AAM designs according to their binder mass compositions.


Author(s):  
Andrzej Gruchot

Abstract The paper presents results of research on the influence of compaction and air and water curing on angle of internal friction and cohesion of fluidized fly ash from “Połaniec” Power Plant. It was stated that the increase in compaction resulted in an insignificant increase of the angle of internal friction and a quite significant increase of cohesion. While the type and time of curing had a great influence on the angle of internal friction and cohesion. The highest values of angle of internal friction were obtained in the air curing, and the lowest in the water curing whereas in case of cohesion there was an inverse relation. The rise of curing time resulted in largely increased cohesion and small changes of angle of internal friction.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


2020 ◽  
Vol 8 (51) ◽  
pp. 18864-18868
Author(s):  
Nanami Aoki ◽  
Yohei Okada ◽  
Hidehiro Kamiya

Sign in / Sign up

Export Citation Format

Share Document