scholarly journals A Study on the utilization of coffee grounds for particle board

2021 ◽  
Vol 10 (2) ◽  
pp. 48-52
Author(s):  
Cut Rizka Maulida ◽  
Mursal Mursal ◽  
Ismail Ismail

Abstrak. Penelitian ini bertujuan untuk membuat papan partikel dengan menggunakan limbah ampas kopi dan resin epoksi sebagai perekat. Komposisi resin epoksi divariasikan yaitu 5, 10, 15 dan 20 vol.% untuk masing-masing partikel ampas kopi berukuran 20 dan 40 mesh. Papan partikel dibuat dengan teknik pressing dengan beban sebesar 9 ton selama 30 menit. Sifat mekanik yang diuji adalah MOE, MOR, dan kuat tekan. Sifat fisis papan partikel yang diuji adalah kerapatan dan pengembangan tebal. Hasil menunjukkan bahwa nilai MOE tertinggi yaitu 20,910 kgf/cm2 pada komposisi 95 vol.% ampas kopi dan 5 vol.% resin epoksi dengan ukuran ampas kopi 40 mesh. MOR tertinggi yaitu 167 kgf/cm2 pada ukuran partikel 40 mesh dengan komposisi ampas kopi 90 vol.% dan resin epoksi 10 vol.%. Nilai kuat tekan tertinggi diperoleh 220 kgf/cm2 pada 20 mesh, dengan komposisi 85 vol.% ampas kopi dan 15 vol.% resin epoksi. Kerapatan dan pengembangan tebal papan partikel yang tertinggi masing-masing adalah 1,16 g/cm3 dan 0,85%. Secara umum, sifat mekanis papan partikel ampas kopi tergantung pada komposisi dan ukuran partikel ampas kopi. Namun, sifat fisisnya tidak berubah secara signifikan untuk ukuran partikel dan komposisi yang berbeda. Papan partikel yang diperoleh dari penelitian ini memenuhi standar ANSI sehingga berpotensi untuk dijadikan sebagai papan partikel atau komposit. Abstract.. This study aims to make a particle board using coffee ground waste and epoxy resin as an adhesive. The composition of the epoxy resin was varied, namely 5, 10, 15 and 20 vol.% for 20 mesh and 40 mesh of coffee grounds particles. Particle board is made by pressing technique with a load of 9 tons for 30 minutes. The mechanical properties tested were MOE, MOR, and compressive strength. The physical properties of the particle board tested were density and thickness swelling. The results showed that the highest MOE particle board was 20.910 kgf/cm2 (95 vol.% coffee grounds:5 vol.% epoxy resin; 40 mesh). The highest MOR was 167 kgf/cm2 (90 vol.% coffee grounds:10 vol.% epoxy resin;40 mesh). The hihgest compressive strength values was 220 kgf/cm2 (85 vol.% coffee grounds:15 vol.% epoxy resin;20 mesh). The highest density and thickness expansion were 1.16 g/cm3 and 0.85%, respectively. In general, the mechanical properties of coffee grounds particleboard depend on the composition and particle size of coffee grounds. However, their physical properties do not change significantly for different particle sizes and compositions. The particle board obtained from this study meets the standard of ANSI. Thus, coffee grounds have the potential to be used as particle board or composite. Keywords particle board, coffee grounds, epoxy resin, mechanical properties, physical properties

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


2015 ◽  
Vol 1088 ◽  
pp. 411-414 ◽  
Author(s):  
Francisco Augusto Zago Marques ◽  
Carlos Eduardo G. da Silva ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Túlio Hallak Panzera ◽  
...  

This research evaluated, with the of the analyses of variance (ANOVA), a composite material based on epoxy matrix phase reinforced with Portland cement (CP-II) particles (0%wt [100%wt of resin], 20%wt, 40%wt, 60%wt). The response-variable investigated were modulus of elasticity (E) and compressive strength (S), bulk density (ρB), apparent density (ρA) and porosity (P). The highest values of the modulus of elasticity were provided from the composites manufactured with 40wt% of cement addition. The inclusion of 60% of cement implies in a reduction in the mechanical properties when compared with the results of the composite manufactured with 40% of cement. For the physical properties, the gradually inclusion of cement provides increasing in the density of the composites, and reduce the porosity of the materials manufactured.


2012 ◽  
Vol 217-219 ◽  
pp. 165-173 ◽  
Author(s):  
Nai Xiu Ding ◽  
Fu Lan Hao ◽  
Lei Li ◽  
Wen Sun ◽  
Liang Liu

BR/MgO composites were prepared with seven kinds of particle sizes of MgO filled respectively. Effects of particle sizes on dynamic mechanical properties, vulcanization characteristics and physical properties of BR/MgO composites were studied. The results showed that the tensile strength of composites filled nanoscale of MgO was nine times of pure BR, and the vulcanization time was significantly shorter than that of composites filled with micron grade filler. The RPA experiments proved that the composites filled with MgO of 20nm and 50nm have greatly higher G', and that the G'of the composites increase markedly while the value of tanδ decrease sharply with given temperature above 90 °C increasing. the higher value of tanδ at the frequency mode, and the obvious Payne effect compared with the composites filled micron grade of MgO


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6813
Author(s):  
Yingdi Liao ◽  
Hongyi Shi ◽  
Shimin Zhang ◽  
Bo Da ◽  
Da Chen

In order to solve the problem of lack of natural river sand, crushed waste oyster shells (WOS) were used to replace river sand. By replacing 20% river sand, WOS mortar with different particle sizes of WOS were made for the experiment. Through experimental observation, the initial slump and slump flow loss rate were studied. The effects of different particle sizes and curing times on the compressive strength, flexural strength, static elastic modulus, and dry shrinkage of WOS mortar were analyzed. The relationship formulas between the compressive strength, flexural strength, particle size, and curing age were proposed. The results showed that the setting time and slump flow decreased with a decrease in the particle size of WOS. It was also found that the mortar with fine crushed WOS had high compressive strength, flexural strength, and static elastic modulus at both early and long-term curing age. A formula was proposed to describe the development of the compressive strength with the particle size of WOS and curing time, and the relations among these mechanical properties were discussed. Furthermore, drying shrinkage increased when WOS was used and could not satisfy the standard requirement of 0.075%. In contrast, the addition of fine WOS and double-dose sulfonated naphthalene-formaldehyde superplasticizer (SNF SP) reduced the shrinkage rate of the mortar by 8.35% and provided better workability and mechanical properties for mortar.


2020 ◽  
Vol 846 ◽  
pp. 93-98
Author(s):  
Sunisa Khamsuk ◽  
K. Choosakull ◽  
P. Wanwong

Porous high purity aluminum was fabricated using a powder metallurgy route combined with the space holder technique. The high purity aluminum powder was mixed with three different particle sizes and contents of the space holder material. The mixed powders were cold compacted at 400 MPa and sintered at 550 °C. The effects of space holder size on the microstructure and mechanical properties of porous high purity aluminum were systematically studied. Results revealed that the size and content of the space holder materials have a significant effect on the mechanical properties of porous aluminium. The compressive strength and hardness of the porous aluminum increased as the size and amount of the space holder material increased and decreased, respectively. The thickness of the cell wall increased with an increase particle size of the space holder material.


2021 ◽  
Vol 10 (2) ◽  
pp. 36-40
Author(s):  
Zia Nurkhalida Hatta ◽  
Mursal Mursal ◽  
Ismail Ismail

Abstrak. Papan partikel merupakan komposit yang tersusun dari filler (penguat) dan matriks (pengikat). Papan partikel dapat dibuat dari bahan limbah pertanian yang mengandung selulosa seperti tempurung kelapa. Penelitian ini menggunakan limbah tempurung kelapa sebagai filler dan resin epoksi (RE) sebagai matriks. Penelitian dilakukan dengan memvariasikan ukuran partikel tempurung kelapa (60, 80, 100 dan 120 mesh) dan komposisi filler tempurung kelapa:perekat RE (70:30, 75:25, 80:20, dan 85:15 vol.%) untuk memperoleh sifat mekanik yang terbaik. Sifat mekanik yang diuji adalah modulus of elasticity, modulus of rupture, dan kuat tekan. Sifat mekanik papan partikel diuji sesuai standar ASTM. Hasil penelitian menunjukkan bahwa sifat mekanik menurun dengan bertambahnya komposisi tempurung kelapa. Namun sifat mekanik meningkat dengan mengecilnya ukuran partikel dari 60 ke 120 mesh. Papan partikel yang dihasilkan memenuhi persyaratan ANSI untuk ukuran partikel 120 mesh, komposisi tempurung kelapa 80 vol.%, dan RE 20 vol.%.Abstract. Particle board is a composite composed of filler (reinforcement) and a matrix (binder). Particle board can be made of agricultural waste material containing cellulose such as a coconut shell. This study used coconut shell particles as a filler and epoxy resin (RE) as a matrix. The research was conducted by varying the particle size of coconut shells (60, 80, 100 and 120 mesh) and the composition of coconut shell fillers:RE adhesive (70:30, 75:25, 80:20, and 85:15 vol.%) to obtain the best mechanical properties. The mechanical properties tested were modulus of elasticity, modulus of rupture, and compressive strength. Particleboard was tested according to ASTM standards. The results showed that the mechanical properties decreased with increasing coconut shell composition. However, the mechanical properties increased as the particle size decreased from 60 to 120 mesh. The resulting particle board meets ANSI requirements for a particle size of 120 mesh, 80 vol.% of coconut shell composition, and 20 vol.% of RE. Keywords: Coconut Shell, Epoxy Resin, Mechanical Properties, Particle Board


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Dwi Cahyo Nugroho ◽  
Gusti Eva Tavita ◽  
Dina Setyawati

The study aimed to analyze the quality of particle boards from bark fiber of sago (Metroxylon spp) with citric acid as natural adhesives based on physical properties, mechanical properties, and durability from subterranean termites Coptotermes curvignathus Holmgren. Particle boards are made with a size of 30 cm x 30 cm x 1 cm. The experimental factors used in the study included densities (0.7 gr/cm3 and 0.8 gr/cm3) and concentrations of citric acid adhesives (20% and 30%). The material then flow into hotpress with 1800C for 15 minutes and pressure at 25 kg/cm2. Testing of the physical and mechanical properties of particle boards refers to the JIS A 5908-2003 standard and durability against subterranean termites Coptotermes curvignathus Holmgren was conducted based on SNI 01. 7207-2006. The results showed that the densities factor had a significant effect on density, thickness swelling, MOE, MOR, internal bond, screw holding strength, and weight loss of the particle board against termites. Meanwhile concentration of citric acid adhesive significantly affected the density, moisture content, water absorption, thickness swelling, MOR, internal bond, and screw holding strength. The interaction between the densities factor and concentration of citric acid has a significant effect on thickness swelling and density. The physical and mechanical properties of particle boards which fulfill the JIS A 5908 2003 standard were density, moisture content, MOR, and screw holding strength. The durability of particleboard againts termites has a very strong level. The average values of termites mortality were 94% ~ 100%. The average of wood weight loss values were 9.61%~ 18.51%. The particle board made with a density 0.8 gr/cm3 and concentration of citric acid adhesive 30% achieved the highest values on physical properties, mechanical properties and durability to the termites Coptotermes curvignathus. Keywords : citric acid, Coptotermes curvignathus, Metroxylon spp, particle board, sago


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


2017 ◽  
Vol 908 ◽  
pp. 118-122 ◽  
Author(s):  
Giedrius Balčiūnas ◽  
Viktor Kizinievič ◽  
Justinas Gargasas

Scientific literature mostly aims at investigation of composites with fibre hemp shives (FHS) aggregate and lime binder, although, such materials are characterised by pretty low mechanical properties. In order to obtain higher mechanical properties of a composite, it is appropriate to use cementitious binder. This work investigates physical properties of blocks from hemp shives aggregate and cementitious binder, manufactured in the expanded clay production line using vibro pressing technology. Following properties of the blocks are determined: freeze-thaw resistance, compressive strength, thermal conductivity and density. Thermal resistance according to EN ISO 6946 for the block with cavities is calculated as well. It is found that compressive strength of FHS-cement blocks may be up to 3.18 MPa when the density is of ~850 kg/m3 and thermal conductivity up to 0.135 W/(m∙K). It is found as well that the decrease of compressive strength is 8.7% after 25 freeze-thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document